论文标题

用Matisse/VLTI查看的Fu Orionis磁盘:$ L $和$ M $ bands中的第一个干涉测量值

The disk of FU Orionis viewed with MATISSE/VLTI: first interferometric observations in $L$ and $M$ bands

论文作者

Lykou, F., Ábrahám, P., Chen, L., Varga, J., Kóspál, Á., Matter, A., Siwak, M., Szabó, Zs. M., Zhu, Z., Liu, H. B., Lopez, B., Allouche, F., Augereau, J. -C., Berio, P., Cruzalèbes, P., Dominik, C., Henning, Th., Hofmann, K. -H., Hogerheijde, M., Jaffe, W. J., Kokoulina, E., Lagarde, S., Meilland, A., Millour, F., Pantin, E., Petrov, R., Robbe-Dubois, S., Schertl, D., Scheuck, M., van Boekel, R., Waters, L. B. F. M., Weigelt, G., Wolf, S.

论文摘要

Fu Orionis的磁盘用Matisse略微解决,表明在热红外发射的区域相当紧凑。 $ \ sim1.3 \ pm0.1 $ mas(以$ l $)为$ \ sim1.3 \ pm0.1 \ $ l $的上限,在$ l $ band中探测的磁盘区域的直径,对应于所采用的GAIA EDR3距离为0.5 au。这代表了积聚磁盘的热,气态区域。 $ n $ band数据表明尘土飞扬的被动磁盘是硅酸盐含量丰富的。只有在$ n $频段中发现该尘埃磁盘的最内向区域,并且以$ \ sim5 $ MAS的角度解决,这转化为直径约为2 au。因此,观察结果对内积盘的外半径放大了严格的约束。 Dust radiative transfer simulations with RADMC-3D provide adequate fits to the spectral energy distribution from the optical to the submillimeter and to the interferometric observables when opting for an accretion rate $\dot{M}\sim 2\times 10^{-5}\, M_\odot$ yr$^{-1}$ and assuming $M_*=0.6\, m_ \ odot $。最重要的是,热内积盘的外半径可以固定为0.3 au。基于文献中散布的光图像的约束,尘土盘的外半径放在100 au处。磁盘中包含的灰尘质量为$ 2.4 \ times10^{ - 4} \,m_ \ odot $,对于典型的气盘比为100,磁盘中的总质量约为0.02 $ m_ \ odot $。我们没有在当前的干涉数据中找到附近伴侣的任何证据,我们暂时探讨了磁盘未对准的情况。对于后者,我们的建模结果表明,磁盘方向与Alma先前成像研究中发现的磁盘方向相似。如果在非常紧凑的内部积聚磁盘中存在不对称性,则可以在较小的空间尺度($ \ \ leq1 $ mas)下解决。

The disk of FU Orionis is marginally resolved with MATISSE, suggesting that the region emitting in the thermal infrared is rather compact. An upper limit of $\sim1.3\pm0.1$ mas (in $L$) can be given for the diameter of the disk region probed in the $L$ band, corresponding to 0.5 au at the adopted Gaia EDR3 distance. This represents the hot, gaseous region of the accretion disk. The $N$-band data indicate that the dusty passive disk is silicate-rich. Only the innermost region of said dusty disk is found to emit strongly in the $N$ band, and it is resolved at an angular size of $\sim5$ mas, which translates to a diameter of about 2 au. The observations therefore place stringent constraints for the outer radius of the inner accretion disk. Dust radiative transfer simulations with RADMC-3D provide adequate fits to the spectral energy distribution from the optical to the submillimeter and to the interferometric observables when opting for an accretion rate $\dot{M}\sim 2\times 10^{-5}\, M_\odot$ yr$^{-1}$ and assuming $M_*=0.6\, M_\odot$. Most importantly, the hot inner accretion disk's outer radius can be fixed at 0.3 au. The outer radius of the dusty disk is placed at 100 au, based on constraints from scattered-light images in the literature. The dust mass contained in the disk is $2.4\times10^{-4}\, M_\odot$, and for a typical gas-to-dust ratio of 100, the total mass in the disk is approximately 0.02 $M_\odot$. We did not find any evidence for a nearby companion in the current interferometric data, and we tentatively explored the case of disk misalignment. For the latter, our modeling results suggest that the disk orientation is similar to that found in previous imaging studies by ALMA. Should there be an asymmetry in the very compact, inner accretion disk, this might be resolved at even smaller spatial scales ($\leq1$ mas).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源