论文标题

多样性偏爱感知的链接建议在线社交网络建议

Diversity Preference-Aware Link Recommendation for Online Social Networks

论文作者

Yin, Kexin, Fang, Xiao, Chen, Bintong, Sheng, Olivia

论文摘要

链接推荐(推荐链接以连接未链接的在线社交网络用户),是一个基本的社交网络分析问题,具有很大的业务影响。现有的链接推荐方法倾向于向用户推荐类似的朋友,但忽略了用户的多样性偏好,尽管社会心理学理论表明,多样性偏好的关键性可以链接建议性能。在推荐系统中,与链接建议有关的领域,已经提出了许多多元化方法来改善推荐项目的多样性。然而,多样性偏好与多元化方法研究的多样性不同。为了解决这些研究差距,我们定义和操作链接建议的多样性偏好概念,并提出一个新的链接建议问题:多样性偏好感知链接建议问题。然后,我们分析了新链接建议问题的关键特性,并开发了一种新的链接建议方法来解决该问题。我们使用两个大规模的在线社交网络数据集,我们进行了广泛的经验评估,以证明我们方法的卓越性能超过了用于链接建议以及最先进的链接建议方法的代表性多元化方法。

Link recommendation, which recommends links to connect unlinked online social network users, is a fundamental social network analytics problem with ample business implications. Existing link recommendation methods tend to recommend similar friends to a user but overlook the user's diversity preference, although social psychology theories suggest the criticality of diversity preference to link recommendation performance. In recommender systems, a field related to link recommendation, a number of diversification methods have been proposed to improve the diversity of recommended items. Nevertheless, diversity preference is distinct from diversity studied by diversification methods. To address these research gaps, we define and operationalize the concept of diversity preference for link recommendation and propose a new link recommendation problem: the diversity preference-aware link recommendation problem. We then analyze key properties of the new link recommendation problem and develop a novel link recommendation method to solve the problem. Using two large-scale online social network data sets, we conduct extensive empirical evaluations to demonstrate the superior performance of our method over representative diversification methods adapted for link recommendation as well as state-of-the-art link recommendation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源