论文标题
等离子 - 分子远程耦合通过柱结构二氧化硅层增强生物光分析
Plasmon-molecule remote coupling via column-structured silica layer for enhancing biophotonic analysis
论文作者
论文摘要
我们通过一系列密集的Ag纳米群落(AGNIS)阵列展示了远程等离激元增强(RPE),这些阵列是部分金合金的,并与厚度超过100 nm的柱结构二氧化硅(CSS)覆盖剂相连。 CSS层的物理和化学保护可能导致降低分析物分子和金属纳米结构之间的相互影响。 RPE板仅通过溅射和化学浸入过程来实现,从而产生高生产率。我们发现,即使没有金属纳米结构和分析物分子的近距离,RPE的荧光的荧光和10 $^2 $ fold的速度的速度为10 $^7 $倍。我们证实了RPE用于生物量分析的可行性。 RPE在CSS层培养的细胞中为染料分子工作,从而增强了HeLa细胞内细胞内信号动力学的荧光生物传感。 RPE还在生物组织中工作,增强了CSS层上附着的Wistar大鼠的食管外膜的食管组织的拉曼组织学成像。我们还研究了RPE对具有各种分子浓度的染料分子跃迁偶极子对On-On-On-On-On-On-On-On-On-谐波的依赖性。结果表明,RPE是通过通过CSS结构在AGNIS的局部表面等离子体与分析物的分子过渡偶极子之间的远程共振耦合发生的。 RPE板为潜在的生物生物分析(例如高生产率和生物相容性)提供了实际优势。因此,我们预计RPE将晋升为化学,生物学和医学的多功能分析工具。
We demonstrated remote plasmonic enhancement (RPE) by a dense random array of Ag nanoislands (AgNIs) that were partially gold-alloyed and attached with column-structured silica (CSS) overlayer of more than 100 nm in thickness. The physical and chemical protection of the CSS layer could lead to reducing the mutual impact between analyte molecules and metal nanostructures. RPE plate was realized just by sputtering and chemical immersion processes, resulting in high productivity. We found a significant enhancement on the order of 10$^7$-fold for Raman scattering and 10$^2$-fold for fluorescence by RPE even without the proximity of metal nanostructures and analyte molecules. We confirmed the feasibility of RPE for biophotonic analysis. RPE worked for dye molecules in cells cultured on the CSS layer, enabling the enhanced fluorescence biosensing of intracellular signaling dynamics in HeLa cells. RPE also worked for biological tissues, enhancing Raman histological imaging of esophagus tissues with esophageal adventitia of a Wistar rat attached atop the CSS layer. We also investigated the wavelength dependency of RPE on the on- or off-resonant with the dye molecular transition dipoles with various molecular concentrations. The results suggested that the RPE occurred by remote resonant coupling between the localized surface plasmon of AgNIs and the molecular transition dipole of the analyte via the CSS structure. The RPE plate affords practical advantages for potential biophotonic analyses such as high productivity and biocompatibility. We thus anticipate that RPE will advance to versatile analytical tools in chemistry, biology, and medicine.