论文标题

稀疏的建模方法,用于无套套插值的普通范围选项价格和隐含波动

Sparse modeling approach to the arbitrage-free interpolation of plain-vanilla option prices and implied volatilities

论文作者

Guterding, Daniel

论文摘要

我们提出了一种无套套套插值的方法,即普通范围选项价格和隐含的波动,该方法基于与终端密度和期权价格相关的积分方程系统。使用终端密度的离散化,我们将这些积分方程式写为线性方程系统。我们表明,该系统的内核矩阵通常是不良条件的,因此无法使用幼稚的方法为离散密度求解。取而代之的是,我们使用奇异值分解(SVD)为内核矩阵构建了一个稀疏模型,这不仅使我们不仅可以系统地改善核矩阵的条件数量,还可以确定方法的计算工作和准确性。为了允许处理可能包含套利的现实输入的处理,我们将线性方程式制度重新制定为优化问题,其中SVD转换密度最大程度地减少了输入价格与我们方法产生的无套利价格之间的误差。为了在嘈杂的输入价格或套利的存在下进一步稳定该方法,我们将$ l_1 $ regulaine应用于SVD转换密度。我们的方法受到理论物理的最新进展的启发,它为无套套套插入普通范围选项的价格和隐含的波动性提供了灵活,有效的框架,而无需明确指定随机过程,扩展基础函数或任何其他类型的模型。我们证明了我们方法在许多人造和现实的测试用例上的能力。

We present a method for the arbitrage-free interpolation of plain-vanilla option prices and implied volatilities, which is based on a system of integral equations that relates terminal density and option prices. Using a discretization of the terminal density, we write these integral equations as a system of linear equations. We show that the kernel matrix of this system is in general ill-conditioned, so that it can not be solved for the discretized density using a naive approach. Instead, we construct a sparse model for the kernel matrix using the singular value decomposition (SVD), which allows us not only to systematically improve the condition number of the kernel matrix, but also determines the computational effort and accuracy of our method. In order to allow for the treatment of realistic inputs that may contain arbitrage, we reformulate the system of linear equations as an optimization problem, in which the SVD-transformed density minimizes the error between the input prices and the arbitrage-free prices generated by our method. To further stabilize the method in the presence of noisy input prices or arbitrage, we apply an $L_1$-regularization to the SVD-transformed density. Our approach, which is inspired by recent progress in theoretical physics, offers a flexible and efficient framework for the arbitrage-free interpolation of plain-vanilla option prices and implied volatilities, without the need to explicitly specify a stochastic process, expansion basis functions or any other kind of model. We demonstrate the capabilities of our method on a number of artificial and realistic test cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源