论文标题
MOLMINER:您只想看一次化学结构识别
MolMiner: You only look once for chemical structure recognition
论文作者
论文摘要
分子结构总是将分子结构描述为在期刊论文和专利等科学文档中的2D印刷形式。但是,这些2D描述不可用机器可读。由于积压了数十年的积压和越来越多的印刷文献,因此需要将印刷描绘转换为机器可读格式,这被称为光学化学结构识别(OCSR)。在过去的三十年中,大多数OCSR系统遵循了一种基于规则的方法,在该方法中,描述矢量化的关键步骤基于对向量和节点作为键和原子的解释。在这里,我们提出了一个实用的软件Molminer,该软件主要是使用最初用于语义分割和对象检测开发的深神经网络来构建的,以识别文档中的原子和债券元素。这些公认的元素可以很容易地作为具有基于距离的构造算法的分子图连接。我们在四个基准数据集上仔细评估了我们的软件,并具有最先进的性能。还测试了各种实际应用程序方案,产生令人满意的结果。 Mac和Windows版本的免费下载链接可用:Mac:https://molminer-cdn.iipharma.cn/pharma-mind/artifact/Artifact/latest/mac/mac/pharmamind-mac-mac-latest-setup.dmg and Windows: https://molminer-cdn.iipharma.cn/pharma-mind/artifact/latest/win/pharmamind-win-win-latest-setup.exe
Molecular structures are always depicted as 2D printed form in scientific documents like journal papers and patents. However, these 2D depictions are not machine-readable. Due to a backlog of decades and an increasing amount of these printed literature, there is a high demand for the translation of printed depictions into machine-readable formats, which is known as Optical Chemical Structure Recognition (OCSR). Most OCSR systems developed over the last three decades follow a rule-based approach where the key step of vectorization of the depiction is based on the interpretation of vectors and nodes as bonds and atoms. Here, we present a practical software MolMiner, which is primarily built up using deep neural networks originally developed for semantic segmentation and object detection to recognize atom and bond elements from documents. These recognized elements can be easily connected as a molecular graph with distance-based construction algorithm. We carefully evaluate our software on four benchmark datasets with the state-of-the-art performance. Various real application scenarios are also tested, yielding satisfactory outcomes. The free download links of Mac and Windows versions are available: Mac: https://molminer-cdn.iipharma.cn/pharma-mind/artifact/latest/mac/PharmaMind-mac-latest-setup.dmg and Windows: https://molminer-cdn.iipharma.cn/pharma-mind/artifact/latest/win/PharmaMind-win-latest-setup.exe