论文标题
Hessianfr:一种高效的基于Hessian的关注式算法,用于最小值优化
HessianFR: An Efficient Hessian-based Follow-the-Ridge Algorithm for Minimax Optimization
论文作者
论文摘要
可区分的两人序列游戏(例如,甘斯的图像生成)的广泛应用引起了研究人员的极大兴趣和关注,以研究高效且快速的算法。大多数现有算法都是基于同时游戏的良好属性(即凸 - concave Readoff功能,但不适用于求解具有不同设置的顺序游戏)开发的。从理论上讲,一些常规的梯度下降算法在数值上未能找到同时游戏的本地NASH平衡或顺序游戏的本地minimax(即本地stackelberg平衡)。在本文中,我们提出了Hessianfr,这是一种有效的基于Hessian的跟随算法,并具有理论保证。此外,利用随机算法的收敛性和Hessian逆的近似值以提高算法效率。训练生成对抗网络(GAN)的一系列实验已经在合成和现实世界大规模图像数据集(例如MNIST,CIFAR-10和CELEBA)上进行了。实验结果表明,拟议的Hessianfr在收敛和图像产生质量方面优于基准。
Wide applications of differentiable two-player sequential games (e.g., image generation by GANs) have raised much interest and attention of researchers to study efficient and fast algorithms. Most of the existing algorithms are developed based on nice properties of simultaneous games, i.e., convex-concave payoff functions, but are not applicable in solving sequential games with different settings. Some conventional gradient descent ascent algorithms theoretically and numerically fail to find the local Nash equilibrium of the simultaneous game or the local minimax (i.e., local Stackelberg equilibrium) of the sequential game. In this paper, we propose the HessianFR, an efficient Hessian-based Follow-the-Ridge algorithm with theoretical guarantees. Furthermore, the convergence of the stochastic algorithm and the approximation of Hessian inverse are exploited to improve algorithm efficiency. A series of experiments of training generative adversarial networks (GANs) have been conducted on both synthetic and real-world large-scale image datasets (e.g. MNIST, CIFAR-10 and CelebA). The experimental results demonstrate that the proposed HessianFR outperforms baselines in terms of convergence and image generation quality.