论文标题

DTU-NET:曲线结构分割的学习拓扑相似性

DTU-Net: Learning Topological Similarity for Curvilinear Structure Segmentation

论文作者

Lin, Manxi, Bashir, Zahra, Tolsgaard, Martin Grønnebæk, Christensen, Anders Nymark, Feragen, Aasa

论文摘要

曲线结构分割在医学成像中很重要,量化了2D切片中的血管,气道,神经元或器官边界等结构。通过像素分类进行分割通常无法捕获小和低对比度的曲线结构。事先拓扑信息通常用于解决此问题,通常以昂贵的计算成本,有时需要先验的预期拓扑知识。 我们提出DTU-NET,这是一种数据驱动的方法,用于保护拓扑的曲线结构分割。 DTU-NET由两个连续的轻巧U-NET组成,分别用于纹理和拓扑。虽然纹理网使用图像纹理信息进行了粗略的预测,但拓扑网络通过采用经过训练的三胞胎损失来识别结构中的错误和错过的分裂,从而从粗糙的预测中学习了拓扑信息。我们对具有挑战性的多类超声扫描分段数据集以及众所周知的视网膜成像数据集进行实验。结果表明,我们的模型在像素细分精度和拓扑连续性中都优于现有方法,而无需先前的拓扑知识。

Curvilinear structure segmentation is important in medical imaging, quantifying structures such as vessels, airways, neurons, or organ boundaries in 2D slices. Segmentation via pixel-wise classification often fails to capture the small and low-contrast curvilinear structures. Prior topological information is typically used to address this problem, often at an expensive computational cost, and sometimes requiring prior knowledge of the expected topology. We present DTU-Net, a data-driven approach to topology-preserving curvilinear structure segmentation. DTU-Net consists of two sequential, lightweight U-Nets, dedicated to texture and topology, respectively. While the texture net makes a coarse prediction using image texture information, the topology net learns topological information from the coarse prediction by employing a triplet loss trained to recognize false and missed splits in the structure. We conduct experiments on a challenging multi-class ultrasound scan segmentation dataset as well as a well-known retinal imaging dataset. Results show that our model outperforms existing approaches in both pixel-wise segmentation accuracy and topological continuity, with no need for prior topological knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源