论文标题

Nonabelian分支覆盖物和$ l^p $ - 伯格曼预测$ \ MATHBB C^2 $

Nonabelian ramified coverings and $L^p$-boundedness of Bergman projections in $\mathbb C^2$

论文作者

Dall'Ara, Gian Maria, Monguzzi, Alessandro

论文摘要

在这项工作中,我们探讨了伯格曼预测的$ l^p $结合性的主题,这些域名是通过“尼斯”域(例如,具有真实分析边界的Pseudoconvex域)可以覆盖的范围。特别是,我们专注于二维正常受损覆盖物,其覆盖组是有限的单一反射组。在一个无限的示例家族中,我们能够证明每$ p \ in(1,\ infty)$中的伯格曼投影的$ l^p $结合。

In this work we explore the theme of $L^p$-boundedness of Bergman projections of domains that can be covered, in the sense of ramified coverings, by "nice" domains (e.g. strictly pseudoconvex domains with real analytic boundary). In particular, we focus on two-dimensional normal ramified coverings whose covering group is a finite unitary reflection group. In an infinite family of examples we are able to prove $L^p$-boundedness of the Bergman projection for every $p\in(1,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源