论文标题

在吉川桌子中的表面链接的三重点数上

On the triple point number of surface-links in Yoshikawa's table

论文作者

Cazet, Nicholas

论文摘要

Yoshikawa在r^4中用CH-INDEX 10或以下的r^4制作了一张打结的表面。这张杰出的表是第一个列举类似于经典的打结桌的打结表面的表。表面链接的碎片图是r^3中表面的一般投影,沿其单数集的交叉信息。代表给定表面结的所有破碎板图中的三重点数量最小是其三重点数。本文编译了吉川表中表示的表面链接的已知三点数,并在其余表面链接的三重点数上计算或提供边界。

Yoshikawa made a table of knotted surfaces in R^4 with ch-index 10 or less. This remarkable table is the first to enumerate knotted surfaces analogous to the classical prime knot table. A broken sheet diagram of a surface-link is a generic projection of the surface in R^3 with crossing information along its singular set. The minimal number of triple points among all broken sheet diagrams representing a given surface-knot is its triple point number. This paper compiles the known triple point numbers of the surface-links represented in Yoshikawa's table and calculates or provides bounds on the triple point number of the remaining surface-links.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源