论文标题
Convposecnn2:密集6D对象的预测和完善
ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses
论文作者
论文摘要
对象姿势估计是机器人技术中的关键感知能力。我们提出了posecnn方法的完全跨跨趋化扩展,该方法密集地预测了对象翻译和方向。这具有多个优点,例如改善方向预测的空间分辨率 - 可用于高度整理的布置,通过避免完全连通性和快速推断来大大减少参数。我们提出并讨论了几种可用于密集取向预测的聚合方法,这些方法可以作为后处理步骤,例如平均和聚类技术。我们证明,我们的方法在具有挑战性的YCB-VIDEO数据集上达到了与PeSecnn相同的准确性,并提供了我们方法的几种变体的详细消融研究。最后,我们证明可以通过将迭代完善模块插入网络中间来进一步改进该模型,从而实现预测的一致性。
Object pose estimation is a key perceptual capability in robotics. We propose a fully-convolutional extension of the PoseCNN method, which densely predicts object translations and orientations. This has several advantages such as improving the spatial resolution of the orientation predictions -- useful in highly-cluttered arrangements, significant reduction in parameters by avoiding full connectivity, and fast inference. We propose and discuss several aggregation methods for dense orientation predictions that can be applied as a post-processing step, such as averaging and clustering techniques. We demonstrate that our method achieves the same accuracy as PoseCNN on the challenging YCB-Video dataset and provide a detailed ablation study of several variants of our method. Finally, we demonstrate that the model can be further improved by inserting an iterative refinement module into the middle of the network, which enforces consistency of the prediction.