论文标题
非绝热量子动力学的相空间映射方法的统一配方
Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic Quantum Dynamics
论文作者
论文摘要
非绝热动力学过程是化学,材料,生物学和环境分子系统中最重要的量子机械现象之一,在这种化学,材料,生物学和环境分子系统中,不同电子状态之间的耦合是分子结构中固有的,要么由(强)外部场引起。维数的诅咒表明,与系统大小相关的计算工作的棘手缩放尺度,并限制了实现实际大型系统的数值精确方法。量子力学的相空间公式提供了一个重要的理论框架,用于构建基于量子动力学的实用近似轨迹方法。该帐户回顾了我们在相空间映射理论中的最新进展:一个统一的框架,用于构建耦合的F-state系统的相空间上的映射哈密顿量,其中著名的Meyer-Miller Hamiltonian模型是一种特殊情况,是一种特殊情况,是一种量子空间的量子空间,用于自由度和自由度的量子机制,并映射到了自由度,并映射到了核级别上,并映射了核湿度的核级别,非绝热系统的映射相空间方法与非平衡电子传输过程之间的同构。
Nonadiabatic dynamical processes are one of the most important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems, where the coupling between different electronic states is either inherent in the molecular structure or induced by the (intense) external field. The curse of dimensionality indicates the intractable exponential scaling of calculation effort with system size and restricts the implementation of numerically exact approaches for realistic large systems. The phase space formulation of quantum mechanics offers an important theoretical framework for constructing practical approximate trajectory-based methods for quantum dynamics. This Account reviews our recent progress in phase space mapping theory: a unified framework for constructing the mapping Hamiltonian on phase space for coupled F-state systems where the renowned Meyer-Miller Hamiltonian model is a special case, a general phase space formulation of quantum mechanics for nonadiabatic systems where the electronic degrees of freedom are mapped onto constraint space and the nuclear degrees of freedom are mapped onto infinite space, and an isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes.