论文标题

基于深度学习的预测纳米颗粒相变期间的原位透射电子显微镜

Deep-learning-based prediction of nanoparticle phase transitions during in situ transmission electron microscopy

论文作者

Fu, Wenkai, Spurgeon, Steven R., Wang, Chongmin, Shao, Yuyan, Wang, Wei, Peles, Amra

论文摘要

我们开发了机器学习能力,以预测基于合并的长期内存(LSTM)算法的原位传输电子显微镜(TEM)视频帧的时间顺序和功能删除方法。我们训练深度学习模型,以根据先前帧的序列的输入来预测未来的视频帧。这种独特的能力提供了使用原位环境TEM数据在动态反应条件下Au纳米颗粒中尺寸依赖性结构变化的见解,从而为形态演化和催化特性的模型提供了信息。基于训练数据集的规模有限,基于科学数据特征,希望模型性能和预测的准确性是可取的。损失函数的模型收敛和值均值误差显示对训练策略的依赖,而预测的结构图像和地面真相之间的结构相似性度量达到约0.7的值。当使用更大的基准数据集对深度学习架构进行训练时,该计算的结构相似性小于获得的值,这足以显示Au纳米粒子的结构过渡。尽管我们模型的性能参数适用于科学数据,但在非科学的大数据集中却没有达到的效果,但我们证明了模型的能力,可以预测Au Nano颗粒作为化学反应条件下的Au Nano颗粒作为CO氧化的颗粒结构相变的演变的能力。使用这种方法,有可能预测新出现的自动化实验平台的化学反应的下一步。

We develop the machine learning capability to predict a time sequence of in-situ transmission electron microscopy (TEM) video frames based on the combined long-short-term-memory (LSTM) algorithm and the features de-entanglement method. We train deep learning models to predict a sequence of future video frames based on the input of a sequence of previous frames. This unique capability provides insight into size dependent structural changes in Au nanoparticles under dynamic reaction condition using in-situ environmental TEM data, informing models of morphological evolution and catalytic properties. The model performance and achieved accuracy of predictions are desirable based on, for scientific data characteristic, based on limited size of training data sets. The model convergence and values for the loss function mean square error show dependence on the training strategy, and structural similarity measure between predicted structure images and ground truth reaches the value of about 0.7. This computed structural similarity is smaller than values obtained when the deep learning architecture is trained using much larger benchmark data sets, it is sufficient to show the structural transition of Au nanoparticles. While performance parameters of our model applied to scientific data fall short of those achieved for the non-scientific big data sets, we demonstrate model ability to predict the evolution, even including the particle structural phase transformation, of Au nano particles as catalyst for CO oxidation under the chemical reaction conditions. Using this approach, it may be possible to anticipate the next steps of a chemical reaction for emerging automated experimentation platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源