论文标题
双曲线四倍图的动力学Zeta函数的零
Zeros of dynamical zeta functions for hyperbolic quadradic maps
论文作者
论文摘要
我们证明,与$ z^2 + c $相关的动态Zeta函数$ z(s)$,$ c <-3.75 $具有必需的零零条$ 1/2 + $,也就是说,对于每一个$ε> 0 $,只有有限的零件在strip $ \ nathrm {re}(s)(s)> 1/2 + 1/2 +ε$。我们还使用Jenkinson-Pollicott提出的方法介绍了$ z(s)$的零的一些数值图。
We prove that the dynamical zeta function $Z(s)$ associated to $z^2 + c$ with $c < -3.75$ has essential zero-free strips of size $1/2 +$, that is, for every $ε> 0$, there exist only finitely many zeros in the strip $\mathrm{Re}(s) > 1/2 + ε$. We also present some numerical plots of zeros of $Z(s)$ using the method proposed in Jenkinson-Pollicott.