论文标题

变高的2D干泡沫的平均演化和尺寸亲关系

Average Evolution and Size-Topology Relations for Coarsening 2d Dry Foams

论文作者

Chieco, Anthony T., Sethna, James P., Durian, Douglas J.

论文摘要

根据von Neumann Law的二维干泡沫为$ da/dt \ propto(n-6)$,其中$ n $是带有面积$ a $的泡沫的一面。这样的泡沫达到了一个自相似的缩放状态,在该状态下,区域和侧面分布是静止的。将自相似性与冯·诺伊曼(Von Neumann)定律相结合,我们得出了气泡区域分布的矩和关系矩矩的时间导数,并与侧数分布的平均值相结合,这些分布的平均值是由气泡面积的力量加权的。为了测试这些预测,我们收集和分析了高精度图像数据,以在平行的丙烯酸板之间压壁的大量气泡,并允许将其缩放到自相似的缩放状态中。我们在两到二十的时间内找到了很好的共识。

Two-dimensional dry foams coarsen according to the von Neumann law as $dA/dt \propto (n-6)$ where $n$ is the number of sides of a bubble with area $A$. Such foams reach a self-similar scaling state where area and side-number distributions are stationary. Combining self-similarity with the von Neumann law, we derive time derivatives of moments of the bubble area distribution and a relation connecting area moments with averages of the side-number distribution that are weighted by powers of bubble area. To test these predictions, we collect and analyze high precision image data for a large number of bubbles squashed between parallel acrylic plates and allowed to coarsen into the self-similar scaling state. We find good agreement for moments ranging from two to twenty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源