论文标题
FEDSA:通过联合模拟退火加速在协作环境中的入侵检测
FedSA: Accelerating Intrusion Detection in Collaborative Environments with Federated Simulated Annealing
论文作者
论文摘要
快速识别新的网络攻击模式对于改善网络安全至关重要。然而,确定在异质网络中正在进行的攻击是一项非平凡的任务。联合学习是作为入侵检测系统(IDS)协作培训的解决方案。联合学习的IDS使用联合参与者提供的本地机器学习模型训练全球模型,而无需共享本地数据。但是,优化挑战是联合学习的固有的。本文提出了联合的模拟退火(FEDSA)元启发式,以在联邦学习中为每个聚合回合选择超参数和参与者的子集。 FEDSA优化了链接到全局模型收敛的超参数。该提案减少了聚集回合,并加快了收敛的速度。因此,FEDSA加速从本地模型中提取学习,需要更少的ID更新。提案评估表明,FEDSA全球模型在不到十回合中收敛。该提案需要比常规聚合方法的攻击检测准确性约为97%的聚集回合要少50%。
Fast identification of new network attack patterns is crucial for improving network security. Nevertheless, identifying an ongoing attack in a heterogeneous network is a non-trivial task. Federated learning emerges as a solution to collaborative training for an Intrusion Detection System (IDS). The federated learning-based IDS trains a global model using local machine learning models provided by federated participants without sharing local data. However, optimization challenges are intrinsic to federated learning. This paper proposes the Federated Simulated Annealing (FedSA) metaheuristic to select the hyperparameters and a subset of participants for each aggregation round in federated learning. FedSA optimizes hyperparameters linked to the global model convergence. The proposal reduces aggregation rounds and speeds up convergence. Thus, FedSA accelerates learning extraction from local models, requiring fewer IDS updates. The proposal assessment shows that the FedSA global model converges in less than ten communication rounds. The proposal requires up to 50% fewer aggregation rounds to achieve approximately 97% accuracy in attack detection than the conventional aggregation approach.