论文标题
无定形电子固体的分数化和拓扑
Fractionalization and topology in amorphous electronic solids
论文作者
论文摘要
传统上,通过与晶体Bloch波形相关的量规不变的可观察物进行了体育学分析。最近的工作表明,即使在无定形环境中,许多自由费米昂的拓扑特性也可以生存。在这项工作中,我们扩展了这些研究,以结合强烈反相互作用对拓扑和其他相关引起现象的命运的影响。使用基于Parton的方法,我们在二维无定形网络中获得具有可调拓扑的电子两轨模型的相互作用相图。除了绝热连接到自由费用极限的(非)拓扑阶段外,我们还发现了许多具有非平凡性手性中性边缘模式的晶体莫特绝缘阶段的强烈相互作用的无定形类似物,以及一个分数化的anderson绝缘阶段。因此,由于非平凡拓扑,混乱和较强的相互作用的综合作用,无定形网络为研究众多的物质及其玻璃动力学提供了一个新的操场。
Band-topology is traditionally analyzed in terms of gauge-invariant observables associated with crystalline Bloch wavefunctions. Recent work has demonstrated that many of the free fermion topological characteristics survive even in an amorphous setting. In this work, we extend these studies to incorporate the effect of strong repulsive interactions on the fate of topology and other correlation induced phenomena. Using a parton-based approach, we obtain the interacting phase diagram for an electronic two-orbital model with tunable topology in a two dimensional amorphous network. In addition to the (non-)topological phases that are adiabatically connected to the free fermion limit, we find a number of strongly interacting amorphous analogs of crystalline Mott insulating phases with non-trivial chiral neutral edge modes, and a fractionalized Anderson insulating phase. The amorphous networks thus provide a new playground for studying a plethora of exotic states of matter, and their glassy dynamics, due to the combined effects of non-trivial topology, disorder, and strong interactions.