论文标题
统一的Sunyaev-Zel'Dovich和X射线从集群到星系组的预测:X射线质量估算对$ Y-M $缩放关系的影响
Unifying Sunyaev-Zel'dovich and X-ray predictions from clusters to galaxy groups: the impact of X-ray mass estimates on the $Y-M$ scaling relation
论文作者
论文摘要
精确集群宇宙学的主要局限性之一是估计群集质量的系统错误和不确定性。使用Mock-X管道,我们为30,000多个模拟的星系组和群集的样本产生合成的X射线图像,并导出群集和星系组X射线属性,并在$ 10^{12} $中,$ M _ {\ rm 500crit} $在$ M _ {\ rm 500crit} $之间我们探讨了Sunyaev-Zel'Dovich的Illustristng预测与X射线比例关系与质量的相似性和差异。我们发现中位静液压质量偏置$ b = 0.125 \ pm 0.003 $ for $ m _ {\ rm 500crit} $ $> $> 10^{13} $ m $ _ {\ odot} $。当质量从合成X射线观测得出时,偏差增加到$ b = 0.17 \ pm 0.004 $。我们对$ y _ {\ rm x} $对光晕质量的依赖性的不同基础假设建模如何在观察到的$ y _ {\ rm sz} -M_ {y _ _ _ {\ rm x}} $ scaleing Relation中产生偏见。特别是,简化的假设是,$ y _ {\ rm x} - m _ {\ rm tot} $在所有质量尺度上都是自相似的,在很大程度上将突破掩盖了$ y _ {\ rm sz} - m _ {\ m _ {\ rm tot} $ and ymimimates $ y y _ = rm s =我们表明,使用新模型来校准$ y _ {\ rm x} - $ MASS代理,用于平滑损坏的功率法,将重现真正的基础$ y _ {\ rm sz} - m _ {\ rm rm tot} $缩放关系以高准确。此外,$ m_ {y _ {\ rm x}} $估计用此方法校准的$ y _ {\ rm sz} - m_ {y _ {y _ {\ rm x}} $预测,这些预测不会因样品中较低的质量分子或较低的群集或星系组而不会偏见。最后,我们表明,我们平滑破裂的功率定律模型提供了一种强大的方法来推导$ y _ {\ rm x} - $质量代理,从而大大降低了集群,组和星系的质量偏见水平。
One of the main limitations in precision cluster cosmology arises from systematic errors and uncertainties in estimating cluster masses. Using the Mock-X pipeline, we produce synthetic X-ray images and derive cluster and galaxy group X-ray properties for a sample of over 30,000 simulated galaxy groups and clusters with $M_{\rm 500crit}$ between $10^{12}$ and $2\times 10^{15}$ M$_{\odot}$ in IllustrisTNG. We explore the similarities and differences between IllustrisTNG predictions of the Sunyaev-Zel'dovich and X-ray scaling relations with mass. We find a median hydrostatic mass bias $b = 0.125 \pm 0.003$ for $M_{\rm 500crit}$ $>10^{13}$ M$_{\odot}$. The bias increases to $b = 0.17 \pm 0.004$ when masses are derived from synthetic X-ray observations. We model how different underlying assumptions about the dependence of $Y_{\rm X}$ on halo mass can generate biases in the observed $Y_{\rm SZ} - M_{Y_{\rm X}}$ scaling relation. In particular, the simplifying assumption that $Y_{\rm X} - M_{\rm tot}$ is self-similar at all mass scales largely hides the break in $Y_{\rm SZ} - M_{\rm tot}$ and overestimates $Y_{\rm SZ}$ at galaxy and groups scales. We show that calibrating the $Y_{\rm X}-$mass proxy using a new model for a smoothly broken power law reproduces the true underlying $Y_{\rm SZ} - M_{\rm tot}$ scaling relation with high accuracy. Moreover, $M_{Y_{\rm X}}$ estimates calibrated with this method lead to $Y_{\rm SZ} - M_{Y_{\rm X}}$ predictions that are not biased by the presence of lower mass clusters or galaxy groups in the sample. Finally, we show that our smoothly broken power law model provides a robust way to derive the $Y_{\rm X}-$mass proxy, significantly reducing the level of mass bias for clusters, groups, and galaxies.