论文标题

Seiberg-Witten理论的结结一致性不变性和4个manifolds中的切片属界限

Knot concordance invariants from Seiberg-Witten theory and slice genus bounds in 4-manifolds

论文作者

Baraglia, David

论文摘要

我们构建了一个新的结成结合一致的家族,不变性$θ^{(q)}(k)$,其中$ q $是质量数字。我们的不变式是从作者和Hekmati建造的Equivariant Seiberg-Witten-loer同谋获得的,该学位适用于$ Q $ Q $ cyclic Cover,$ s^3 $以$ k $的分支为$ s^3 $。在情况下,$ q = 2 $,我们的不变$θ^{(2)}(k)$与HOM和WU定义的结Floer同源性不变$ν^+(k)$共享许多相似之处。我们的不变量$θ^{(q)}(k)$在任何平滑,正确嵌入,具有琐碎的表面上的$ k $的属性上给出了下限,该$ 4 $ -4 $ -Manifold带有边界$ s^3 $。

We construct a new family of knot concordance invariants $θ^{(q)}(K)$, where $q$ is a prime number. Our invariants are obtained from the equivariant Seiberg-Witten-Floer cohomology, constructed by the author and Hekmati, applied to the degree $q$ cyclic cover of $S^3$ branched over $K$. In the case $q=2$, our invariant $θ^{(2)}(K)$ shares many similarities with the knot Floer homology invariant $ν^+(K)$ defined by Hom and Wu. Our invariants $θ^{(q)}(K)$ give lower bounds on the genus of any smooth, properly embedded, homologically trivial surface bounding $K$ in a definite $4$-manifold with boundary $S^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源