论文标题

通过可学习的通信为自动车辆系统进行协作3D对象检测

Collaborative 3D Object Detection for Automatic Vehicle Systems via Learnable Communications

论文作者

Wang, Junyong, Zeng, Yuan, Gong, Yi

论文摘要

在3D点云中准确检测对象是自动驾驶系统中的关键问题。协作感知可以结合来自空间多样的传感器的信息,并为提高自主驾驶系统的感知准确性提供了重大好处。在这项工作中,我们认为自动驾驶汽车使用本地点云数据,并通过无线链接将来自相邻基础架构的信息结合在一起,以进行合作3D对象检测。但是,预定义通信方案中的车辆和基础设施之间的信息共享可能会导致交流拥堵和/或带来有限的性能提高。为此,我们提出了一个新颖的协作3D对象检测框架,该框架由三个组成部分组成:特征学习网络,将点云映射到特征地图中;一个有效的通信块,可传播从车辆的紧凑和细粒度的查询特征图,以支持基础架构,并优化查询和钥匙之间的注意力重量,以完善支持特征图;一个融合本地特征图和加权支持特征图的区域提案网络,用于3D对象检测。我们使用在两个复杂的驾驶场景中创建的合成合作数据集评估了提出的框架的性能:回旋处和T型结。实验结果和带宽使用分析表明,在所有情况下,在不同的检测困难下,我们的方法可以节省沟通和计算成本,并显着提高检测性能。

Accurate detection of objects in 3D point clouds is a key problem in autonomous driving systems. Collaborative perception can incorporate information from spatially diverse sensors and provide significant benefits for improving the perception accuracy of autonomous driving systems. In this work, we consider that the autonomous vehicle uses local point cloud data and combines information from neighboring infrastructures through wireless links for cooperative 3D object detection. However, information sharing among vehicle and infrastructures in predefined communication schemes may result in communication congestion and/or bring limited performance improvement. To this end, we propose a novel collaborative 3D object detection framework that consists of three components: feature learning networks that map point clouds into feature maps; an efficient communication block that propagates compact and fine-grained query feature maps from vehicle to support infrastructures and optimizes attention weights between query and key to refine support feature maps; a region proposal network that fuses local feature maps and weighted support feature maps for 3D object detection. We evaluate the performance of the proposed framework using a synthetic cooperative dataset created in two complex driving scenarios: a roundabout and a T-junction. Experiment results and bandwidth usage analysis demonstrate that our approach can save communication and computation costs and significantly improve detection performance under different detection difficulties in all scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源