论文标题

注意差距:减轻无监督的跨模式医学图像细分的当地不平衡

Mind The Gap: Alleviating Local Imbalance for Unsupervised Cross-Modality Medical Image Segmentation

论文作者

Su, Zixian, Yao, Kai, Yang, Xi, Wang, Qiufeng, Yan, Yuyao, Sun, Jie, Huang, Kaizhu

论文摘要

无监督的跨模式医学图像适应旨在减轻不同成像方式之间的严重域间隙,而无需使用目标域标签。该广告系列中的一个关键依赖于使源和目标域的分布保持一致。一种常见的尝试是强制两个域之间的全局对齐,但是,这忽略了致命的局部不平衡域间隙问题,即,一些具有较大域间隙的局部特征更难传输。最近,某些方法进行了一致的一致性,重点是当地区域,以提高模型学习的效率。尽管此操作可能会导致上下文中关键信息的缺陷。为了应对这一限制,我们提出了一种新的策略,以减轻医疗图像的特征,即全球本地联盟一致性的特征,以减轻域差距不平衡。具体而言,特征 - 键入样式转移模块首先合成类似目标的源包含图像,以减少全局域间隙。然后,通过优先考虑具有较大域间隙的那些歧视性特征来集成本地功能蒙版,以减少本地特征的“间隙”。全球和局部对齐的这种组合可以精确地将关键区域定位在分割目标中,同时保留整体语义一致性。我们进行了一系列具有两个跨模式适应任务的实验。心脏子结构和腹部多器官分割。实验结果表明,我们的方法在这两个任务中都达到了最先进的性能。

Unsupervised cross-modality medical image adaptation aims to alleviate the severe domain gap between different imaging modalities without using the target domain label. A key in this campaign relies upon aligning the distributions of source and target domain. One common attempt is to enforce the global alignment between two domains, which, however, ignores the fatal local-imbalance domain gap problem, i.e., some local features with larger domain gap are harder to transfer. Recently, some methods conduct alignment focusing on local regions to improve the efficiency of model learning. While this operation may cause a deficiency of critical information from contexts. To tackle this limitation, we propose a novel strategy to alleviate the domain gap imbalance considering the characteristics of medical images, namely Global-Local Union Alignment. Specifically, a feature-disentanglement style-transfer module first synthesizes the target-like source-content images to reduce the global domain gap. Then, a local feature mask is integrated to reduce the 'inter-gap' for local features by prioritizing those discriminative features with larger domain gap. This combination of global and local alignment can precisely localize the crucial regions in segmentation target while preserving the overall semantic consistency. We conduct a series of experiments with two cross-modality adaptation tasks, i,e. cardiac substructure and abdominal multi-organ segmentation. Experimental results indicate that our method achieves state-of-the-art performance in both tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源