论文标题

特殊同质谎言组中剪切和项目的复杂性

Complexity of Cut-and-Project Sets of Polytopal Type in Special Homogeneous Lie Groups

论文作者

Kaiser, Peter

论文摘要

本文的目的是确定在非亚伯式情况下切割和项目的复杂性函数的渐近生长速率。在均质两步nilpotent Lie组中的多面体类型的模型集中,我们可以确定复杂性函数渐近性的行为例如$ r^{homdim(g)dim(h)} $。此外,我们将接受域的概念推广到局部紧凑的第二个可计数组。

The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups we can establish that the complexity function asymptotically behaves like $r^{homdim(G) dim(H)}$. Further we generalize the concept of acceptance domains to locally compact second countable groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源