论文标题

星际冰谷物上氨结合能的理论分布:一种新的计算框架

Theoretical distribution of the ammonia binding energy at interstellar icy grains: a new computational framework

论文作者

Tinacci, Lorenzo, Germain, Aurele, Pantaleone, Stefano, Ferrero, Stefano, Ceccarelli, Cecilia, Ugliengo, Piero

论文摘要

星际颗粒上分子的结合能(BE)对于星际培养基(ISM)的化学演化至关重要。到目前为止,这两个温度编程的解吸(TPD)实验室实验和量子化学计算通常仅提供每个分子的BE的单个值。这是一个严重的局限性,因为包裹谷物披风的冰是结构无定形的,从而产生了可能的吸附位点的多种多样,每个都有不同的BES。然而,冰的性质无形的性质阻止了结构细节的知识,从而阻碍了公共公认的原子冰冷模型的发展。在这项工作中,我们提出了一个计算框架,该框架通过水积聚密切模仿了通过水通过水的形成。在该谷物上,进行研究分子的无偏随机定位(但可重现)。在这里,我们介绍了NH $ _3 $的测试案例,这是分子ISM中无处不在的物种。我们提供通过层次结构方法计算的BE分布,将半经验XTB-GFN2用作低级方法,以描述整个冰冻群集与B97D3 DFT相结合,可作为NH $ _3 $相互作用的本地区域的高级方法。最终的ZPE校正BE是在ONIOM(DLPNO-CCSD(T)// B97D3:XTB-GFN2)水平上计算的,确保了最佳的成本/准确性比率。预测的NH $ _3 $ BE分布的主要峰与实验性TPD和文献计算的数据一致。在非常低的值时也存在第二个宽峰,从未检测到。它可以为长期存在的难题提供解决方案,即在冷ISM物体中也观察到的气态NH $ _3 $。

The binding energies (BE) of molecules on the interstellar grains are crucial in the chemical evolution of the interstellar medium (ISM). Both temperature programmed desorption (TPD) laboratory experiments and quantum chemistry computations have often provided, so far, only single values of the BE for each molecule. This is a severe limitation, as the ices enveloping the grain mantles are structurally amorphous, giving rise to a manifold of possible adsorption sites, each with different BEs. However, the ice amorphous nature prevents the knowledge of structural details, hindering the development of a common accepted atomistic icy model. In this work, we propose a computational framework that closely mimics the formation of the interstellar grain mantle through a water by water accretion. On that grain, an unbiased random (but well reproducible) positioning of the studied molecule is then carried out. Here we present the test case of NH$_3$, an ubiquitous species in the molecular ISM. We provide the BE distribution computed by a hierarchy approach, using the semiempirical xTB-GFN2 as low-level method to describe the whole icy cluster combined with the B97D3 DFT functional as high-level method on the local zone of the NH$_3$ interaction. The final ZPE corrected BE is computed at ONIOM(DLPNO-CCSD(T)//B97D3:xTB-GFN2) level, ensuring the best cost/accuracy ratio. The main peak of the predicted NH$_3$ BE distribution is in agreement with experimental TPD and literature computed data. A second broad peak at very low BE values is also present, never detected before. It may provide the solution to a long-standing puzzle about the presence of gaseous NH$_3$ observed also in cold ISM objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源