论文标题

可再现冠状钙评分的生成模型

Generative Models for Reproducible Coronary Calcium Scoring

论文作者

van Velzen, Sanne G. M., de Vos, Bob D., Noothout, Julia M. H., Verkooijen, Helena M., Viergever, Max A., Išgum, Ivana

论文摘要

目的:冠状动脉钙(CAC)评分,即CT中量化的CAC量,是冠心病(CHD)事件的强大而独立的预测指标。但是,CAC的评分受到扫描间可重复性有限的影响,这主要是由于临床定义需要应用固定强度水平阈值进行钙化分割。在非ECG同步CT中,这种限制尤其明显,其中病变受心脏运动和部分体积效应的影响更大。因此,我们提出了一种CAC定量方法,该方法不需要分割CAC的阈值。方法:我们的方法利用了一个生成的对抗网络,其中将带有CAC的CT分解为没有CAC的图像,并且仅显示CAC的图像。该方法使用CycleGAN进行了使用626个低剂量胸部CT和514个放射治疗计划CT进行训练。比较了1,662例患者的放疗治疗计划中的临床钙评分与临床钙评分进行了比较,每例有两次扫描。结果:通过提出的方法,CAC质量的相对范围差异较低:47%,而手动临床钙评分为89%。该方法的Agatston评分的类内相关系数为0.96,而自动临床钙评分为0.91。结论:通过我们的方法实现的扫描间可重复性增加可能会导致CHD风险分类的可靠性提高,并提高了CHD事件预测的准确性。

Purpose: Coronary artery calcium (CAC) score, i.e. the amount of CAC quantified in CT, is a strong and independent predictor of coronary heart disease (CHD) events. However, CAC scoring suffers from limited interscan reproducibility, which is mainly due to the clinical definition requiring application of a fixed intensity level threshold for segmentation of calcifications. This limitation is especially pronounced in non-ECG-synchronized CT where lesions are more impacted by cardiac motion and partial volume effects. Therefore, we propose a CAC quantification method that does not require a threshold for segmentation of CAC. Approach: Our method utilizes a generative adversarial network where a CT with CAC is decomposed into an image without CAC and an image showing only CAC. The method, using a CycleGAN, was trained using 626 low-dose chest CTs and 514 radiotherapy treatment planning CTs. Interscan reproducibility was compared to clinical calcium scoring in radiotherapy treatment planning CTs of 1,662 patients, each having two scans. Results: A lower relative interscan difference in CAC mass was achieved by the proposed method: 47% compared to 89% manual clinical calcium scoring. The intraclass correlation coefficient of Agatston scores was 0.96 for the proposed method compared to 0.91 for automatic clinical calcium scoring. Conclusions: The increased interscan reproducibility achieved by our method may lead to increased reliability of CHD risk categorization and improved accuracy of CHD event prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源