论文标题
来自标量调节引力的大规模结构功率谱
Large-scale structure power spectrum from scalar-tensor gravity
论文作者
论文摘要
这项工作介绍了使用动力学系统方法计算大规模结构的功率谱,用于标量调整的重力理论中的多流体宇宙。我们使用$ 1+3 $协变量的方法来获得进化方程,并研究扰动方程的物质功率谱的行为。该研究基于$ f(r)$重力理论与标量调整的重力理论之间的等效性。我们发现,对于PowerLaw $(r^{n})$模型,$ 1 <n <1.3 $,我们的功率频谱在一般相对论规模不变的线上都超过了。对于$ n \ geq 1.3 $,功率谱从恒定振幅开始,然后经历振荡并最终以有限幅度饱和。这种行为与文献中的其他观察结果一致。该结果支持了对线性顺序上$ f(r)$与标量调整理论之间的等价性的持续调查。
This work deals with the computation of the power spectrum of large-scale structure using the dynamical system approach for a multi-fluid universe in scalar-tensor theory of gravity. We use the $1+3$ covariant approach to obtain evolution equations and study the behavior of the matter power spectrum of perturbation equations. The study is based on the equivalence between $f(R)$ theory of gravity and scalar-tensor theory of gravity. We find that, for power-law $(R^{n})$ models, with $1<n<1.3$, we have the power spectrum evolving above general relativistic scale-invariant line. For $n\geq 1.3$, the power spectrum starts with constant amplitude then it experiences oscillations and eventually saturates at finite amplitude. Such behavior is consistent with other observations in the literature. The result supports the ongoing investigations of the equivalence between $f(R)$ and scalar-tensor theory at linear order.