论文标题
揭示了银河系最近与Gaia EDR3目录的机器学习线速度的目录
Revealing the Milky Way's Most Recent Major Merger with a Gaia EDR3 Catalog of Machine-Learned Line-of-Sight Velocities
论文作者
论文摘要
机器学习可以在诸如Gaia之类的调查中从天体中推断出缺失的视线速度中发挥强大的作用。在本文中,我们将神经网络应用于Gaia早期数据版本3(EDR3),并获得约9200万颗恒星的视线速度和相关的不确定性。该网络以恒星的视差,角度坐标和适当的运动为输入,并在盖亚(Gaia)的640万颗恒星中进行了验证,并具有完整的相位空间信息。网络对其速度预测的不确定性是其设计的关键方面。通过将这些不确定性与推断的速度正确卷积,我们获得了准确的恒星运动学分布。作为第一个科学应用程序,我们使用新的网络完成的目录来识别属于银河系最近主要合并Gaia-Sausage-Ecceladus(GSE)的候选明星。我们介绍了该样品中约有45万GSE候选者的运动学,能量,角动量和空间分布,还研究了与Galah和Apogee交叉匹配的人的化学丰度。随着带有完整相位空间信息的星星的训练集的增长,网络的预测能力只会随着未来的GAIA数据发布而继续提高。这项工作提供了首次演示,说明如何使用机器学习来利用数据上的高维相关性来推断视线速度,并为如何训练,验证和应用这样的神经网络提供了一个模板,当没有完整的观察数据。
Machine learning can play a powerful role in inferring missing line-of-sight velocities from astrometry in surveys such as Gaia. In this paper, we apply a neural network to Gaia Early Data Release 3 (EDR3) and obtain line-of-sight velocities and associated uncertainties for ~92 million stars. The network, which takes as input a star's parallax, angular coordinates, and proper motions, is trained and validated on ~6.4 million stars in Gaia with complete phase-space information. The network's uncertainty on its velocity prediction is a key aspect of its design; by properly convolving these uncertainties with the inferred velocities, we obtain accurate stellar kinematic distributions. As a first science application, we use the new network-completed catalog to identify candidate stars that belong to the Milky Way's most recent major merger, Gaia-Sausage-Enceladus (GSE). We present the kinematic, energy, angular momentum, and spatial distributions of the ~450,000 GSE candidates in this sample, and also study the chemical abundances of those with cross matches to GALAH and APOGEE. The network's predictive power will only continue to improve with future Gaia data releases as the training set of stars with complete phase-space information grows. This work provides a first demonstration of how to use machine learning to exploit high-dimensional correlations on data to infer line-of-sight velocities, and offers a template for how to train, validate and apply such a neural network when complete observational data is not available.