论文标题
海马集团:一种高效的,海马风格的算法,用于图形群集
Hippocluster: an efficient, hippocampus-inspired algorithm for graph clustering
论文作者
论文摘要
随机散步可以揭示网络中的社区或集群,因为它们更可能留在集群中,而不是留下它。因此,一种社区检测算法使用随机步行来以各种方式测量节点对之间的距离,然后将K-均值或其他通用聚类方法应用于这些距离。有趣的是,大脑中的信息处理可能会提出一种直接从随机步行中学习群集的更简单方法。我们从海马中汲取灵感,描述了一个简单的两层神经学习框架。一层的神经元与图节点相关联并模拟随机步行。这些模拟导致第二层神经元通过简单的关联学习来调节簇。我们表明,如果将这些神经元相互作用建模为特定的方式,那么该系统本质上是直接在步行空间中应用的K均值聚类的变体,绕过计算节点距离/相似性的通常步骤。结果是有效的图形聚类方法。生物信息处理系统以高效率和适应性而闻名。在基准图上的测试中,我们的框架证明了这种高数据效率,低内存使用,低复杂性和对图形更改的实时适应性,同时仍然可以实现与其他算法相当的聚类质量。
Random walks can reveal communities or clusters in networks, because they are more likely to stay within a cluster than leave it. Thus, one family of community detection algorithms uses random walks to measure distance between pairs of nodes in various ways, and then applies K-Means or other generic clustering methods to these distances. Interestingly, information processing in the brain may suggest a simpler method of learning clusters directly from random walks. Drawing inspiration from the hippocampus, we describe a simple two-layer neural learning framework. Neurons in one layer are associated with graph nodes and simulate random walks. These simulations cause neurons in the second layer to become tuned to graph clusters through simple associative learning. We show that if these neuronal interactions are modelled a particular way, the system is essentially a variant of K-Means clustering applied directly in the walk-space, bypassing the usual step of computing node distances/similarities. The result is an efficient graph clustering method. Biological information processing systems are known for high efficiency and adaptability. In tests on benchmark graphs, our framework demonstrates this high data-efficiency, low memory use, low complexity, and real-time adaptation to graph changes, while still achieving clustering quality comparable to other algorithms.