论文标题

MASKEVAL:基于加权的MLM评估文本摘要和简化

MaskEval: Weighted MLM-Based Evaluation for Text Summarization and Simplification

论文作者

Liu, Yu Lu, Bawden, Rachel, Scialom, Thomas, Sagot, Benoît, Cheung, Jackie Chi Kit

论文摘要

在文本摘要和简化中,必须沿多个维度评估系统输出,例如相关性,事实一致性,流利性和语法性,并且广泛的可能输出可能具有高质量。这些属性使得开发适应性的,无参考的评估指标既需要又具有挑战性。我们介绍了Maskeval,这是一种用于文本摘要和简化的无参考度量,该指标通过对候选人和源文本的串联执行蒙版语言建模(MLM)进行操作。它具有类似注意力的加权机制来调节每个MLM步骤的相对重要性,至关重要的是,它可以适应以评估不同质量的维度。我们证明了它在英语摘要和简化与人类判断的相关性方面的有效性,并探讨了这两个任务之间的转移场景。

In text summarization and simplification, system outputs must be evaluated along multiple dimensions such as relevance, factual consistency, fluency, and grammaticality, and a wide range of possible outputs could be of high quality. These properties make the development of an adaptable, reference-less evaluation metric both necessary and challenging. We introduce MaskEval, a reference-less metric for text summarization and simplification that operates by performing masked language modeling (MLM) on the concatenation of the candidate and the source texts. It features an attention-like weighting mechanism to modulate the relative importance of each MLM step, which crucially allows it to be adapted to evaluate different quality dimensions. We demonstrate its effectiveness on English summarization and simplification in terms of correlations with human judgments, and explore transfer scenarios between the two tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源