论文标题
la $ _ {2-x} $ sr $ _x $ cuo $ _4 $的回旋质量的演变与掺杂的演变
Evolution of the cyclotron mass with doping in La$_{2-x}$Sr$_x$CuO$_4$
论文作者
论文摘要
最近在高磁场中使用Time-domain Thz光谱率在高磁场中使用时间域THZ光谱术,对最佳掺杂的LA $ _ {2-X} $ _X $ _x $ _4 $的最新观察结果为研究库层超导体研究提供了新的可能性。人们可以在较无序的丘疹中测量回旋质量的散射时间短,因此将研究扩展到未观察到量子振荡的材料和兴奋剂。在这里,我们介绍了掺杂的丘陵蛋白掺杂的载体质量的测量值_ {2-x} $ sr $ _x $ _x $ cuo $ _4 $ $ _4 $在一系列的掺杂量中,涉及略微不足的掺杂($ x = 0.13 $),以至于高度过高($ x = 0.26 $),附近是超级超级戈德的术语。这些结果揭示了掺杂的系统增加$ m_c $,高达裸电子质量的13倍。这与从热容量中提取的那些质量相反,这些质量在pseudogap临界点$ p^*$和/或LIFSHITZ过渡附近显示峰值。对于所有掺杂的兴奋剂,在田间最高31 t的频率是线性的,没有证据表明田间引起的费米表面重建。人们发现,人们对所有兴奋剂均具有阳性,但是在下部和最佳掺杂样品的热容量质量下,幅度较高,同时超过了过多的样品。除其他方面,这些结果令人惊讶,因为光发射揭示了我们兴奋剂范围中间的Lifshitz过渡,并且在常规理论中,由有限频率共振确定的回旋体质量的迹象是 - {\ it拓扑数量}仅对Fermi表面是否在孔或电子周围封闭。我们没有看到质量在$ p^*$附近的质量分歧,也没有在Lifshitz过渡附近的迹象,表明任何奇异性(如果存在)不足以影响回旋质量。
The recent observation of cyclotron resonance in optimally-doped La$_{2-x}$Sr$_x$CuO$_4$ using time-domain THz spectroscopy in high magnetic field has given new possibilities for the study of cuprate superconductors. One can measure the cyclotron mass in more disordered cuprates possesing short scattering times therefore expanding the study to materials and dopings in which quantum oscillations have not been observed. Here we present the measurement of the carrier mass of the hole doped cuprate La$_{2-x}$Sr$_x$CuO$_4$ across a a range of dopings spanning the slightly underdoped ($x=0.13$) to highly overdoped ($x=0.26$), near to the termination of the superconducting dome. These results reveal a systematic increase of $m_c$ with doping, up to values greater than thirteen times the bare electron mass. This is in contrast with those masses extracted from the heat capacity, which show a peak near the pseudogap critical point $p^*$ and/or Lifshitz transition. The cyclotron frequency is linear in field up to 31 T for all dopings giving no evidence for field induced Fermi surface reconstructions. The cyclotron mass is found to be positive for all dopings, but with a magnitude systematically below the heat capacity mass for under and optimally doped samples, while exceeding it for overdoped samples. Among other aspects, these results are surprising as photoemission reveals a Lifshitz transition in the middle of our doping range and the sign of the cyclotron mass determined from a finite frequency resonance is -- in conventional theories -- a {\it topological quantity} only sensitive to whether or not the Fermi surface is closed around holes or electrons. We see no sign of a divergence of the mass near $p^*$ nor near the Lifshitz transition, showing that any singularity -- if it exists -- is not strong enough to affect the cyclotron mass.