论文标题
双分子晶体管中的轨道杂交和静电相互作用
Orbital hybridization and electrostatic interaction in a double molecule transistor
论文作者
论文摘要
了解分子间相互作用并利用这些相互作用来有效控制单分子的转运行为是从单分子装置到分子电路1-6的关键步骤。尽管许多单分子检测技术用于检测单分子水平1,4,5,7,8处的分子相互作用,但尚未证明通过电气方法探测和调整分子间相互作用。在这项工作中,我们成功地组装了一个双分子晶体管,该晶体管融合了两个锰苯苯胺分子,我们通过使用栅极电压对分子轨道进行电气操作,在其上探测并原位调整相互作用。这两个分子的轨道水平彼此彼此,并以不同的方式将其求婚。当一个分子中的单电子变化改变另一种传输行为时,观察到静电相互作用,从而提供了有关通过分子的电子序列隧道动态过程的信息。当在非平衡条件下将两个轨道水平放入退化时,发现轨道杂交,这使得隧道电子不再定位于特定分子,而是由两个分子共享,从而提供了一种新的机制来控制非共价分子之间的电荷转移。当前的工作为基于单分子的功能电单元的工作原理提供了前肢。
Understanding the intermolecular interactions and utilize these interactions to effectively control the transport behavior of single molecule is the key step from single molecule device to molecular circuits1-6. Although many single molecule detection techniques are used to detect the molecular interaction at single-molecule level1,4,5,7,8, probing and tuning the intermolecular interaction all by electrical approaches has not been demonstrated. In this work, we successful assemble a double molecule transistor incorporating two manganese phthalocyanine molecules, on which we probe and tune the interaction in situ by implementing electrical manipulation on molecular orbitals using gate voltage. Orbital levels of the two molecules couple to each other and couple to the universal gate differently. Electrostatic interaction is observed when single electron changing in one molecule alters the transport behavior of the other, providing the information about the dynamic process of electron sequent tunneling through a molecule. Orbital hybridization is found when two orbital levels are put into degeneracy under non-equilibrium condition, making the tunneling electrons no longer localized to a specific molecule but shared by two molecules, offering a new mechanism to control charge transfer between non-covalent molecules. Current work offer a forelook into working principles of functional electrical unit based on single molecules.