论文标题
tagprime:关系结构提取的统一框架
TAGPRIME: A Unified Framework for Relational Structure Extraction
论文作者
论文摘要
自然语言处理中的许多任务都需要为给定条件提取关系信息,例如事件参数提取,关系提取和面向任务的语义解析。最近的作品通常为每个任务提供复杂的模型,并更少注意这些任务的共同点,并为所有任务拥有一个统一的框架。在这项工作中,我们建议对所有这些任务进行统一的看法,并引入Tagprime来解决关系结构提取问题。 Tagprime是一个序列标记模型,它将有关给定条件信息(例如事件触发)的信息附加到输入文本的信息。借助预训练的语言模型中的自我注意机制,启动词使输出上下文化表示包含有关给定条件的更多信息,因此更适合于为条件提取特定关系。对涵盖五种不同语言的十个数据集的三个不同任务进行了广泛的实验和分析,证明了tagprime的一般性和有效性。
Many tasks in natural language processing require the extraction of relationship information for a given condition, such as event argument extraction, relation extraction, and task-oriented semantic parsing. Recent works usually propose sophisticated models for each task independently and pay less attention to the commonality of these tasks and to have a unified framework for all the tasks. In this work, we propose to take a unified view of all these tasks and introduce TAGPRIME to address relational structure extraction problems. TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition (such as an event trigger) to the input text. With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition, and hence become more suitable for extracting specific relationships for the condition. Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.