论文标题
向罗伯格 - 韦斯平面的手性相变
Towards the chiral phase transition in the Roberge-Weiss plane
论文作者
论文摘要
我们讨论了QCD中的手性和中心扇区相变的相互作用与假想的夸克化学势$μ= i(2n+1)πt/3 $之间的相互作用。 Based on a finite size scaling analysis in (2+1)-flavor QCD using HISQ fermions with a physical strange quark mass and a range of light quark masses, we show that the endpoint of the line of first-order Roberge-Weiss (RW) transitions between center sectors is second order for light quark masses $m_l\ge m_s/320$, and that it belongs to the $3$-d, $Z(2)$普遍班级。手性冷凝物的操作员在RW相变有效的自旋模型中的表现就像能型操作员。结果,对于夸克质量的任何非零值,手性冷凝物将在RW相变温度($ t_ {rw} $)处具有无限斜率。它的波动,即断开的手性敏感性,其表现类似于$ z(2)$对称模型中的特定热量,并且在RW相变温度的无限体积限制中,对于任何非零夸克质量的非零值,在RW相变温度$ t_ {rw} $中。我们的分析表明RW相变的临界温度和RW平面中的手性相变的重合。在时间范围$n_τ= 4 $的晶格上,我们在手性限制中找到$t_χ= t_ {rw} = 195(1)〜$ mev。
We discuss the interplay between chiral and center sector phase transitions that occur in QCD with an imaginary quark chemical potential $μ=i(2n+1) πT/3$. Based on a finite size scaling analysis in (2+1)-flavor QCD using HISQ fermions with a physical strange quark mass and a range of light quark masses, we show that the endpoint of the line of first-order Roberge-Weiss (RW) transitions between center sectors is second order for light quark masses $m_l\ge m_s/320$, and that it belongs to the $3$-d, $Z(2)$ universality class. The operator for the chiral condensate behaves like an energy-like operator in an effective spin model for the RW phase transition. As a consequence, for any non-zero value of the quark mass, the chiral condensate will have an infinite slope at the RW phase transition temperature, $T_{RW}$. Its fluctuation, the disconnected chiral susceptibility, behaves like the specific heat in $Z(2)$ symmetric models and diverges in the infinite volume limit at the RW phase transition temperature $T_{RW}$ for any non-zero value of the light quark masses. Our analysis suggests the critical temperatures for the RW phase transition and the chiral phase transition coincide in the RW plane. On lattices with temporal extent $N_τ=4$, we find in the chiral limit $T_χ=T_{RW}=195(1)~$MeV.