论文标题
使用高斯工艺搜索天体物理瞬变中的准周期振荡
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
论文作者
论文摘要
准周期振荡(QPO)的分析对于理解瞬态事件(例如伽马射线爆发,太阳耀斑,磁铁耀斑和快速无线电爆发)的许多天体物理物体的动态行为很重要。天体物理学家经常搜索使用频域方法(例如(lomb-scargle)期刊图)的QPO,这些方法通常假设幂律模型加上QPO频率周围的过量。可以使用高斯过程(GP)回归直接在时间域中对时间序列数据进行研究。尽管在一般情况下,GP回归在计算上的昂贵,但天体物理数据和模型的特性允许快速的可能性策略。数据中的异质性和非平稳性已显示在基于周期图的分析中会导致偏见。高斯流程可以考虑到这些属性。使用GPS,我们将QPO建模为确定性耀斑形状之上的随机过程。使用贝叶斯推断,我们演示了如何推断GP超参数并分配它们的物理含义,例如QPO频率。我们还在QPO和替代模型(例如红噪声)之间执行模型选择,并表明可以可靠地找到QPO。此方法很容易适用于各种不同的天体物理数据集。我们证明了这种方法在一系列短瞬态范围内的使用:伽马射线爆发,磁力耀斑,磁性巨型耀斑和模拟的太阳耀斑数据。
Analyses of quasi-periodic oscillations (QPOs) are important to understanding the dynamic behaviour in many astrophysical objects during transient events like gamma-ray bursts, solar flares, magnetar flares and fast radio bursts. Astrophysicists often search for QPOs with frequency-domain methods such as (Lomb-Scargle) periodograms, which generally assume power-law models plus some excess around the QPO frequency. Time-series data can alternatively be investigated directly in the time domain using Gaussian Process (GP) regression. While GP regression is computationally expensive in the general case, the properties of astrophysical data and models allow fast likelihood strategies. Heteroscedasticity and non-stationarity in data have been shown to cause bias in periodogram-based analyses. Gaussian processes can take account of these properties. Using GPs, we model QPOs as a stochastic process on top of a deterministic flare shape. Using Bayesian inference, we demonstrate how to infer GP hyperparameters and assign them physical meaning, such as the QPO frequency. We also perform model selection between QPOs and alternative models such as red noise and show that this can be used to reliably find QPOs. This method is easily applicable to a variety of different astrophysical data sets. We demonstrate the use of this method on a range of short transients: a gamma-ray burst, a magnetar flare, a magnetar giant flare, and simulated solar flare data.