论文标题
Wigner-Smith时间延迟矩阵用于声学散射:计算方面
Wigner-Smith Time Delay Matrix for Acoustic Scattering: Computational Aspects
论文作者
论文摘要
Wigner-Smith(WS)时间延迟矩阵将声学系统的散射矩阵与其波数衍生物联系起来。 WS时间延迟矩阵的条目可以用类似于能量密度的体积积分来表示,这不能在边界元素方法框架中有效评估。本文提出了两个方案,以有效地填充WS时间延迟矩阵。直接配方将能量密度的体积积分铸成入射场的积分和/或其正常衍生物在散射器表面上。间接配方再次通过表面积分计算系统的散射矩阵及其波数衍生物,然后调用WS关系以计算WS时间延迟矩阵。直接和间接配方都可以产生同等的结果,并且可以轻松地集成到标准边界元素代码中。
The Wigner-Smith (WS) time delay matrix relates an acoustic system's scattering matrix to its wavenumber derivative. The entries of the WS time delay matrix can be expressed in terms of energy density-like volume integrals, which cannot be efficiently evaluated in a boundary element method framework. This paper presents two schemes for efficiently populating the WS time delay matrix. The direct formulation casts the energy density-like volume integrals into integrals of the incident field and the field and/or its normal derivative over the scatterer surface. The indirect formulation computes the system's scattering matrix and its wavenumber derivative, again via surface integration, and then invokes the WS relationship to compute the WS time delay matrix. Both the direct and the indirect formulations yield equivalent results and can be easily integrated into standard boundary element codes.