论文标题
罗伯逊 - 雪人关系的非平衡系统中的量子热力学不确定性
Quantum Thermodynamic Uncertainties in Nonequilibrium Systems from Robertson-Schrödinger Relations
论文作者
论文摘要
热力学不确定性原理是非平衡系统未知水域中少数罕见的锚之一,波动定理更为熟悉。在这项工作中,我们旨在将非平衡系统中热力学数量的不确定性追溯到其量子起源,即量子不确定性原理。我们的结果使我们能够做出此分类陈述:对于高斯系统,热力学功能是Robertson-Schrodinger不确定性函数的功能,对于量子系统而言,它始终是非负的,但对于经典系统来说不一定如此。在这里,量子是指规范操作员对的非交换性。从非平衡自由能[1]中,我们成功地得出了某些热力学量之间的几种不平等。他们假定与常规热力学中的形式相同,但是这些形式本质上是非平衡的,并且它们一直保持着,并且保持着强耦合。此外,我们表明系统的非平衡动力学始终存在波动的不平等。对于在晚期放松到平衡状态的非平衡系统,这种波动的不平等导致了罗伯逊·舒德林格的不确定性原理,借助凯奇·史克瓦兹(Cauchy-Schwarz)的不平等。这项工作为宏观非平衡系统的某些重要热力学特性提供了微观量子基础。
Thermodynamic uncertainty principles make up one of the few rare anchors in the largely uncharted waters of nonequilibrium systems, the fluctuation theorems being the more familiar. In this work we aim to trace the uncertainties of thermodynamic quantities in nonequilibrium systems to their quantum origins, namely, to the quantum uncertainty principles. Our results enable us to make this categorical statement: For Gaussian systems, thermodynamic functions are functionals of the Robertson-Schrodinger uncertainty function, which is always non-negative for quantum systems, but not necessarily so for classical systems. Here, quantum refers to noncommutativity of the canonical operator pairs. From the nonequilibrium free energy[1], we succeeded in deriving several inequalities between certain thermodynamic quantities. They assume the same forms as those in conventional thermodynamics, but these are nonequilibrium in nature and they hold for all times and at strong coupling. In addition we show that a fluctuation-dissipation inequality exists at all times in the nonequilibrium dynamics of the system. For nonequilibrium systems which relax to an equilibrium state at late times, this fluctuation-dissipation inequality leads to the Robertson-Schrodinger uncertainty principle with the help of the Cauchy-Schwarz inequality. This work provides the microscopic quantum basis to certain important thermodynamic properties of macroscopic nonequilibrium systems.