论文标题
对添加噪声中粗糙赫斯特参数的最佳估计
Optimal estimation of the rough Hurst parameter in additive noise
论文作者
论文摘要
我们从离散的噪声数据中估算了沿高频采样方案观察到的离散噪声数据的hurst参数$ h \ in(0,1)$的(0,1)$。当噪声的强度$τ_n$的顺序小于$ n^{ - h} $时,我们以最佳速率$ n^{ - 1/2} $建立LAN属性。否则,我们确定最小值收敛速率为$(n/τ_n^2)^{ - 1/(4H+2)} $即使$τ_n$是第1订单。我们的最佳过程的构造依赖于可能已经预先加热的,与Fukasawa等人一起开发的技术构造。 [波动性很粗糙吗? ARXIV:1905.04852,2019]。在所有情况下,我们都建立了具有明确差异的中心限制定理,从而扩展了Gloter和Hoffmann的经典结果[从离散噪声数据中估算Hurst参数。 《统计年鉴》,35(5):1947- 1974年,2007年]。
We estimate the Hurst parameter $H \in (0,1)$ of a fractional Brownian motion from discrete noisy data, observed along a high frequency sampling scheme. When the intensity $τ_n$ of the noise is smaller in order than $n^{-H}$ we establish the LAN property with optimal rate $n^{-1/2}$. Otherwise, we establish that the minimax rate of convergence is $(n/τ_n^2)^{-1/(4H+2)}$ even when $τ_n$ is of order 1. Our construction of an optimal procedure relies on a Whittle type construction possibly pre-averaged, together with techniques developed in Fukasawa et al. [Is volatility rough? arXiv:1905.04852, 2019]. We establish in all cases a central limit theorem with explicit variance, extending the classical results of Gloter and Hoffmann [Estimation of the Hurst parameter from discrete noisy data. The Annals of Statistics, 35(5):1947-1974, 2007].