论文标题

关于简单和最佳机制之间的无限分离

On Infinite Separations Between Simple and Optimal Mechanisms

论文作者

Psomas, C. Alexandros, Schvartzman, Ariel, Weinberg, S. Matthew

论文摘要

我们考虑将收入最大化的卖家,$ k $异质物品出售给单个加性买家,其价值是从已知的,可能相关的先前$ \ Mathcal {d} $中获取的。众所周知,存在先验$ \ Mathcal {d} $,因此简单的机制 - 具有有限菜单复杂性的机制 - 提取最佳收入的任意小部分。本文考虑了相反的方向:鉴于相关的分布$ \ Mathcal {d} $目睹了简单和最佳机制之间的无限分离,关于$ \ Mathcal {d} $可以说什么? 以前的工作提供了一个框架,用于构建此类$ \ Mathcal {d} $:它作为输入$ k $二维的序列,使一些几何属性满足一些几何属性,并产生$ \ MATHCAL {D} $见证了一个无限差距。我们的第一个主要结果表明,这个框架是没有损失的:每一个见证无限分开的$ \ Mathcal {d} $可能是由此框架造成的。即使是早期的工作也提供了更简化的框架。我们的第二个主要结果表明,这个限制性框架并不紧密。也就是说,我们提供了一个实例$ \ Mathcal {d} $目睹无限差距,但事实证明,这是限制性框架无法造成的。 作为推论,我们发现了一种新的机制,可以在以前的“对齐”机制没有的情况下见证这些无限的分离。

We consider a revenue-maximizing seller with $k$ heterogeneous items for sale to a single additive buyer, whose values are drawn from a known, possibly correlated prior $\mathcal{D}$. It is known that there exist priors $\mathcal{D}$ such that simple mechanisms -- those with bounded menu complexity -- extract an arbitrarily small fraction of the optimal revenue. This paper considers the opposite direction: given a correlated distribution $\mathcal{D}$ witnessing an infinite separation between simple and optimal mechanisms, what can be said about $\mathcal{D}$? Previous work provides a framework for constructing such $\mathcal{D}$: it takes as input a sequence of $k$-dimensional vectors satisfying some geometric property, and produces a $\mathcal{D}$ witnessing an infinite gap. Our first main result establishes that this framework is without loss: every $\mathcal{D}$ witnessing an infinite separation could have resulted from this framework. Even earlier work provided a more streamlined framework. Our second main result establishes that this restrictive framework is not tight. That is, we provide an instance $\mathcal{D}$ witnessing an infinite gap, but which provably could not have resulted from the restrictive framework. As a corollary, we discover a new kind of mechanism which can witness these infinite separations on instances where the previous ''aligned'' mechanisms do not.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源