论文标题
Qudit系统中纯状态的纠缠多边形不平等
Entanglement polygon inequalities for pure states in qudit systems
论文作者
论文摘要
纠缠是量子任务中的重要资源之一。最近,Yang $ et $ al。$ [arxiv:2205.08801]就某些$ n $ qudit pure enate的纠缠措施提出了纠缠多边形的不平等现象(EPI)。在这里,我们继续考虑纠缠多边形的不平等。特别地,我们表明EPI在几何纠缠措施(GEM)方面对$ n $ qudit纯状态有效,然后我们研究了三Q Qubit Systems中纯状态的GEM的残留纠缠。最后,我们提出反例表明,就消极而言,EPI对更高维度的系统无效,我们还提出了一类超越Qubits的状态,就消极性而言满足了EPI。
Entanglement is one of the important resources in quantum tasks. Recently, Yang $et$ $al.$ [arXiv:2205.08801] proposed an entanglement polygon inequalities (EPI) in terms of some entanglement measures for $n$-qudit pure states. Here we continue to consider the entanglement polygon inequalities. Specifially, we show that the EPI is valid for $n$-qudit pure states in terms of geometric entanglement measure (GEM), then we study the residual entanglement in terms of GEM for pure states in three-qubit systems. At last, we present counterexamples showing that the EPI is invalid for higher dimensional systems in terms of negativity, we also present a class of states beyond qubits satisfy the EPI in terms of negativity.