论文标题
在线深度均衡学习,以降级为正规化
Online Deep Equilibrium Learning for Regularization by Denoising
论文作者
论文摘要
通过Denoing(红色)(红色)通过计算合并物理测量模型和学识渊博的图像先验的操作员的固定点来解决成像逆问题的广泛使用的框架(红色)是广泛使用的框架。尽管传统的PNP/红色配方集中在使用图像DeOisiser指定的先验上,但对学习端到端最佳的PNP/RED先验越来越兴趣。最近的深层平衡模型(DEQ)框架通过隐式通过定点方程而无需存储中间激活值,通过隐式区分了PNP/RED先验的内存端到端学习。但是,PNP/RED测量模型对测量总数的计算/记忆复杂性的依赖性使许多成像应用中的DEQ不切实际。我们将ODER作为通过测量模型的随机近似来提高DEQ效率的新策略。我们从理论上分析了ODER,从而深入了解其融合和近似传统DEQ方法的能力。我们的数值结果表明,由于ODER在三种不同的成像应用上,训练/测试复杂性的潜在改善。
Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely-used frameworks for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image priors. While traditional PnP/RED formulations have focused on priors specified using image denoisers, there is a growing interest in learning PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly differentiating through the fixed-point equations without storing intermediate activation values. However, the dependence of the computational/memory complexity of the measurement models in PnP/RED on the total number of measurements leaves DEQ impractical for many imaging applications. We propose ODER as a new strategy for improving the efficiency of DEQ through stochastic approximations of the measurement models. We theoretically analyze ODER giving insights into its convergence and ability to approximate the traditional DEQ approach. Our numerical results suggest the potential improvements in training/testing complexity due to ODER on three distinct imaging applications.