论文标题

探索基于地图的功能,以获得有效的基于注意力的车辆运动预测

Exploring Map-based Features for Efficient Attention-based Vehicle Motion Prediction

论文作者

Gómez-Huélamo, Carlos, Conde, Marcos V., Ortiz, Miguel

论文摘要

从社会机器人到自动驾驶汽车,多种代理的运动预测(MP)是任意复杂环境中的至关重要任务。当前方法使用端到端网络解决了此问题,其中输入数据通常是场景的最高视图和所有代理的过去轨迹;利用此信息是获得最佳性能的必要条件。从这个意义上讲,可靠的自动驾驶(AD)系统必须按时产生合理的预测,但是,尽管其中许多方法使用简单的convnets和LSTM,但在使用两个信息源(地图和轨迹历史记录)时,模型对于实时应用程序的效率可能不够有效。此外,这些模型的性能在很大程度上取决于训练数据的数量,这可能很昂贵(尤其是带注释的HD地图)。在这项工作中,我们探讨了如何使用有效的基于注意力的模型在Argoverse 1.0基准上实现竞争性能,该模型将其作为输入过去的轨迹和最小地图信息的基于地图的功能,以确保有效且可靠的MP。这些功能代表可解释的信息作为可驱动的区域和合理的目标点,与基于黑框CNN的地图处理方法相反。

Motion prediction (MP) of multiple agents is a crucial task in arbitrarily complex environments, from social robots to self-driving cars. Current approaches tackle this problem using end-to-end networks, where the input data is usually a rendered top-view of the scene and the past trajectories of all the agents; leveraging this information is a must to obtain optimal performance. In that sense, a reliable Autonomous Driving (AD) system must produce reasonable predictions on time, however, despite many of these approaches use simple ConvNets and LSTMs, models might not be efficient enough for real-time applications when using both sources of information (map and trajectory history). Moreover, the performance of these models highly depends on the amount of training data, which can be expensive (particularly the annotated HD maps). In this work, we explore how to achieve competitive performance on the Argoverse 1.0 Benchmark using efficient attention-based models, which take as input the past trajectories and map-based features from minimal map information to ensure efficient and reliable MP. These features represent interpretable information as the driveable area and plausible goal points, in opposition to black-box CNN-based methods for map processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源