论文标题

无监督的抽象对话摘要用单词图和POV转换

Unsupervised Abstractive Dialogue Summarization with Word Graphs and POV Conversion

论文作者

Park, Seongmin, Lee, Jihwa

论文摘要

我们通过利用多句子压缩图来推进无监督的抽象对话摘要中最新的。从关于单词图的良好假设开始,我们提出简单但可靠的路径秩和主题分割方案。我们的方法的鲁棒性在跨多个领域的数据集中证明,包括会议,访谈,电影脚本和日常对话。我们还确定了可能通过深度学习来增强基于启发式系统的途径。我们开源的代码,为将来的无监督对话摘要提供了强大的,可再现的基准。

We advance the state-of-the-art in unsupervised abstractive dialogue summarization by utilizing multi-sentence compression graphs. Starting from well-founded assumptions about word graphs, we present simple but reliable path-reranking and topic segmentation schemes. Robustness of our method is demonstrated on datasets across multiple domains, including meetings, interviews, movie scripts, and day-to-day conversations. We also identify possible avenues to augment our heuristic-based system with deep learning. We open-source our code, to provide a strong, reproducible baseline for future research into unsupervised dialogue summarization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源