论文标题

分析基于学习的预算起搏算法

Analysis of a Learning Based Algorithm for Budget Pacing

论文作者

Hajiaghayi, MohammadTaghi, Springer, Max

论文摘要

在本文中,我们分析了一种自然学习算法,用于广告预算的统一起搏,配备有不同的广告销售平台条件。在需求方面,广告商以一种将其分配的预算传播到给定的广告系列中的方式,面临着一个基本的技术挑战。这种自动化和计算必须在运行时完成,这意味着高频拍卖率的计算成本一定是低的。从长远来看,预计广告商几乎耗尽其几乎所有的次级间隔(按小时或分钟)预算,以维持预算配额。为了解决这一挑战,我们的研究分析了一种简单的学习算法,该算法适应了市场的潜在成本功能,并在一小部分的总竞选时间中学习了拍卖时期的最佳平均竞标价值,从而可以实时进行预算顺利。我们证明我们的算法对拍卖机制的变化具有鲁棒性,并表现出与稳定的平均投标策略的快速收敛。该算法不仅保证了预算几乎全部花费,而且还可以顺利进行竞标,以防止早日退出运动,并失去了在此期间晚些时候竞标潜在利润丰厚的印象。 除了理论保证外,我们还通过有关真实广告活动的开源数据的实验结果来验证算法,以进一步证明我们提出的方法的有效性。

In this paper, we analyze a natural learning algorithm for uniform pacing of advertising budgets, equipped to adapt to varying ad sale platform conditions. On the demand side, advertisers face a fundamental technical challenge in automating bidding in a way that spreads their allotted budget across a given campaign subject to hidden, and potentially dynamic, cost functions. This automation and calculation must be done in runtime, implying a necessarily low computational cost for the high frequency auction rate. Advertisers are additionally expected to exhaust nearly all of their sub-interval (by the hour or minute) budgets to maintain budgeting quotas in the long run. To resolve this challenge, our study analyzes a simple learning algorithm that adapts to the latent cost function of the market and learns the optimal average bidding value for a period of auctions in a small fraction of the total campaign time, allowing for smooth budget pacing in real-time. We prove our algorithm is robust to changes in the auction mechanism, and exhibits a fast convergence to a stable average bidding strategy. The algorithm not only guarantees that budgets are nearly spent in their entirety, but also smoothly paces bidding to prevent early exit from the campaign and a loss of the opportunity to bid on potentially lucrative impressions later in the period. In addition to the theoretical guarantees, we validate our algorithm with experimental results from open source data on real advertising campaigns to further demonstrate the effectiveness of our proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源