论文标题
观察光学晶格中费米子之间的单一P波相互作用
Observation of unitary p-wave interactions between fermions in an optical lattice
论文作者
论文摘要
费米子系统中的交换 - 抗对称配对波函数可导致具有非平凡运输特性的非常规的超导体和超流体。这些状态在可控量子系统中的实现,例如超速气体,可以实现新型的量子模拟,拓扑量子门和异国情调的几个体状态。但是,在天然发生的系统中,P波和其他抗对称相互作用较弱,并且它们通过超低系统中Feshbach共振的增强受到三体损失的限制。在这项工作中,我们在多轨三维光学晶格中创建了孤立的自旋偏振式费米原子。我们可以在光谱上测量磁性原子在磁性的共振附近的强烈相互作用对的弹性P波相互作用能,并发现成对的寿命比自由空间大的五十倍。我们证明,当通过谐波能量和单个晶格位点的谐波能量和长度尺度重新缩放时,可以通过磁场和限制强度来广泛调节现场相互作用强度。由于我们的方法中没有三体过程,因此我们能够首次观察弹性的统一P波相互作用。我们通过自由原子和相互作用配对状态之间的Rabi振荡迈出的第一步,朝着连贯的时间控制。所有实验观察结果均与两个通过P波伪电势相互作用的和谐约束原子的精确溶液进行了比较,以及使用AB-Initio相互作用电位的数值溶液。对现场p波相互作用的理解和控制为组装多轨晶格模型的组装提供了必要的组成部分,以及即使在存在隧道的情况下,如何保护该系统免受三体重组的起点。
Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids with non-trivial transport properties. The realisation of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations, topological quantum gates, and exotic few-body states. However, p-wave and other antisymmetric interactions are weak in naturally occurring systems, and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss. In this work, we create isolated pairs of spin-polarised fermionic atoms in a multi-orbital three-dimensional optical lattice. We spectroscopically measure elastic p-wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance and find pair lifetimes to be up to fifty times larger than in free space. We demonstrate that on-site interaction strengths can be widely tuned by the magnetic field and confinement strength but collapse onto a universal single-parameter curve when rescaled by the harmonic energy and length scales of a single lattice site. Since three-body processes are absent within our approach, we are able to observe elastic unitary p-wave interactions for the first time. We take the first steps towards coherent temporal control via Rabi oscillations between free-atom and interacting-pair states. All experimental observations are compared both to an exact solution for two harmonically confined atoms interacting via a p-wave pseudopotential, and to numerical solutions using an ab-initio interaction potential. The understanding and control of on-site p-wave interactions provides a necessary component for the assembly of multi-orbital lattice models, and a starting point for investigations of how to protect such a system from three-body recombination even in the presence of tunnelling.