论文标题

加快步伐:通过合奏伪标记的快速而简单的域适应

Pick up the PACE: Fast and Simple Domain Adaptation via Ensemble Pseudo-Labeling

论文作者

Liao, Christopher, Tsiligkaridis, Theodoros, Kulis, Brian

论文摘要

近年来,域适应性(DA)近年来受到了深度学习研究人员的广泛关注,因为它具有通过标记的数据提高测试准确性的潜力。大多数最先进的DA算法都需要大量的高参数调整,并且由于所需的批量较大,因此在计算密集型上进行了密集。在这项工作中,我们提出了一种快速而简单的DA方法,该方法由三个阶段组成:(1)通过协方差匹配,(2)伪标记和(3)结合。我们称此方法$ \ textbf {pace} $,对于$ \ textbf {p} $ seudo-labels,$ \ textbf {a} $ textbf {c} $ ovariances的赌注,以及$ \ textbf {e textbf {e} $ nsembles。在现代预预式骨架合奏中提取的固定特征的顶部训练了速度。在大多数基准的适应任务上,PACE超过了$ \ textbf {5-10 \%} $的先前最先进的适应任务,而无需训练神经网络。与最先进的DA方法相比,PACE将培训时间和超参数调谐时间分别减少了$ 82 \%$和$ 97 \%$。代码在此处发布:https://github.com/chris210634/pace-domain-audaptation

Domain Adaptation (DA) has received widespread attention from deep learning researchers in recent years because of its potential to improve test accuracy with out-of-distribution labeled data. Most state-of-the-art DA algorithms require an extensive amount of hyperparameter tuning and are computationally intensive due to the large batch sizes required. In this work, we propose a fast and simple DA method consisting of three stages: (1) domain alignment by covariance matching, (2) pseudo-labeling, and (3) ensembling. We call this method $\textbf{PACE}$, for $\textbf{P}$seudo-labels, $\textbf{A}$lignment of $\textbf{C}$ovariances, and $\textbf{E}$nsembles. PACE is trained on top of fixed features extracted from an ensemble of modern pretrained backbones. PACE exceeds previous state-of-the-art by $\textbf{5 - 10 \%}$ on most benchmark adaptation tasks without training a neural network. PACE reduces training time and hyperparameter tuning time by $82\%$ and $97\%$, respectively, when compared to state-of-the-art DA methods. Code is released here: https://github.com/Chris210634/PACE-Domain-Adaptation

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源