论文标题
利用人工智能推断新型的空间生物标志物来诊断嗜酸性食管炎
Harnessing Artificial Intelligence to Infer Novel Spatial Biomarkers for the Diagnosis of Eosinophilic Esophagitis
论文作者
论文摘要
嗜酸性食管炎(EOE)是与食管嗜酸菌升高有关的食管的慢性过敏性炎症状况。仅次于胃食管反流疾病,EOE是成人和儿童慢性难治性吞咽困难的主要原因之一。 EOE诊断需要列举食管活检中食管嗜酸性粒细胞的密度,这是一项耗时的主观任务,从而降低了处理复杂组织结构的能力。以前的人工智能(AI)方法旨在改善基于组织学的诊断,重点是概括和量化最大嗜酸性粒细胞密度的识别和定量。但是,该度量不能解释整个幻灯片图像上嗜酸性粒细胞或其他组织学特征的分布。在这里,我们开发了一个人工智能平台,该平台基于完整的嗜酸性粒细胞和基础区域分布的语义分割来渗透局部和空间生物标志物。除了嗜酸性粒细胞的最大密度(称为峰值嗜酸性粒细胞计数[PEC])和最大基底区分数外,我们还确定了两个反映嗜酸性粒细胞和基底区分数分布的其他指标。这种方法使一个决策支持系统可以预测EOE活动并对EOE患者的组织学严重程度进行分类。我们利用了一个包括400名受试者的1066个活检幻灯片的队列来验证系统的性能,并实现了组织学严重性分类精度为86.70%,灵敏度为84.50%,特异性为90.09%。我们的方法强调了系统地分析整个幻灯片中活检特征的分布的重要性,并为一个个性化的决策支持系统铺平了道路,该系统不仅可以帮助计算细胞,而且还可以改善诊断并提供治疗预测。
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory condition of the esophagus associated with elevated esophageal eosinophils. Second only to gastroesophageal reflux disease, EoE is one of the leading causes of chronic refractory dysphagia in adults and children. EoE diagnosis requires enumerating the density of esophageal eosinophils in esophageal biopsies, a somewhat subjective task that is time-consuming, thus reducing the ability to process the complex tissue structure. Previous artificial intelligence (AI) approaches that aimed to improve histology-based diagnosis focused on recapitulating identification and quantification of the area of maximal eosinophil density. However, this metric does not account for the distribution of eosinophils or other histological features, over the whole slide image. Here, we developed an artificial intelligence platform that infers local and spatial biomarkers based on semantic segmentation of intact eosinophils and basal zone distributions. Besides the maximal density of eosinophils (referred to as Peak Eosinophil Count [PEC]) and a maximal basal zone fraction, we identify two additional metrics that reflect the distribution of eosinophils and basal zone fractions. This approach enables a decision support system that predicts EoE activity and classifies the histological severity of EoE patients. We utilized a cohort that includes 1066 biopsy slides from 400 subjects to validate the system's performance and achieved a histological severity classification accuracy of 86.70%, sensitivity of 84.50%, and specificity of 90.09%. Our approach highlights the importance of systematically analyzing the distribution of biopsy features over the entire slide and paves the way towards a personalized decision support system that will assist not only in counting cells but can also potentially improve diagnosis and provide treatment prediction.