论文标题
大型网络系统的基于聚类的平均州观察员设计
Clustering-Based Average State Observer Design for Large-Scale Network Systems
论文作者
论文摘要
本文解决了具有一些专用传感器的大规模网络系统的汇总监视问题。由于无法观察到和/或计算不可行,因此对此类系统的全面估计通常是不可行的。因此,通过聚类和聚合,获得了一个称为投影网络系统的网络系统的可拖动表示,以设计最小订单平均状态观察者。该观察者估计簇的平均状态,这些状态被识别为估计误差的明确考虑。此外,考虑到聚类,提出的观察者设计算法利用了估计误差动态的结构来实现计算障碍。模拟表明,所提出的算法的计算明显快于通常的$ \ MATHCAL {H} _2/\ MATHCAL {H} _ \ infty $ observer设计技术。另一方面,对估计误差特性的妥协表明是边缘的。
This paper addresses the aggregated monitoring problem for large-scale network systems with a few dedicated sensors. Full state estimation of such systems is often infeasible due to unobservability and/or computational infeasibility. Therefore, through clustering and aggregation, a tractable representation of a network system, called a projected network system, is obtained for designing a minimum-order average state observer. This observer estimates the average states of the clusters, which are identified with explicit consideration to the estimation error. Moreover, given the clustering, the proposed observer design algorithm exploits the structure of the estimation error dynamics to achieve computational tractability. Simulations show that the computation of the proposed algorithm is significantly faster than the usual $\mathcal{H}_2/\mathcal{H}_\infty$ observer design techniques. On the other hand, compromise on the estimation error characteristics is shown to be marginal.