论文标题

混合联邦学习:联合分散和集中学习

Mixed Federated Learning: Joint Decentralized and Centralized Learning

论文作者

Augenstein, Sean, Hard, Andrew, Ning, Lin, Singhal, Karan, Kale, Satyen, Partridge, Kurt, Mathews, Rajiv

论文摘要

联合学习(FL)可从分散的隐私敏感数据中学习,并在Edge客户端进行原始数据的计算。本文介绍了混合FL,该文件包含在协调服务器上计算出的附加损失项(同时维护FL的私人数据限制)。有很多好处。例如,可以利用其他数据中心数据从集中式(数据中心)共同学习,并分散(联合)培训数据,并更好地匹配预期推理数据分布。混合FL还可以将一些密集的计算(例如,将正则化)卸载到服务器上,从而大大减少了通信和客户端计算负载。对于这些和其他混合FL用例,我们提出了三种算法:平行训练,1向梯度转移和2向梯度转移。我们陈述每个融合的界限,并提供适合特定混合FL问题的直觉。最后,我们对三个任务进行了广泛的实验,表明混合FL可以将训练数据融合以达到推理分布上的准确性,并可以将通信和计算开销减少90%以上。我们的实验证实了理论预测算法在不同的混合FL问题设置下的性能。

Federated learning (FL) enables learning from decentralized privacy-sensitive data, with computations on raw data confined to take place at edge clients. This paper introduces mixed FL, which incorporates an additional loss term calculated at the coordinating server (while maintaining FL's private data restrictions). There are numerous benefits. For example, additional datacenter data can be leveraged to jointly learn from centralized (datacenter) and decentralized (federated) training data and better match an expected inference data distribution. Mixed FL also enables offloading some intensive computations (e.g., embedding regularization) to the server, greatly reducing communication and client computation load. For these and other mixed FL use cases, we present three algorithms: PARALLEL TRAINING, 1-WAY GRADIENT TRANSFER, and 2-WAY GRADIENT TRANSFER. We state convergence bounds for each, and give intuition on which are suited to particular mixed FL problems. Finally we perform extensive experiments on three tasks, demonstrating that mixed FL can blend training data to achieve an oracle's accuracy on an inference distribution, and can reduce communication and computation overhead by over 90%. Our experiments confirm theoretical predictions of how algorithms perform under different mixed FL problem settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源