论文标题
SEM图像和EBSD衍射模式之间的Banach定分点从圆柱对称旋转晶体中
Banach fixed-point between SEM image and EBSD diffraction pattern from a cylindrically symmetric rotating crystal
论文作者
论文摘要
kikuchi带是由散布在晶体标本中的不一致电子的bragg衍射产生的,并且在扫描电子显微镜的传输和反射模式(SEM)中都可以观察到。必须使用融合,摇动或放牧的发射梁来产生发散的电子源以获得kikuchi模式。本文报告了从特殊旋转晶体的SEM图像中观察到的基克奇图案,并在局部晶体方向上连续旋转并满足圆柱形对称性,称为圆柱形对称旋转晶体。圆柱形对称旋转晶体的SEM图像反映了真实和动量空间中电子与样品之间的相互作用。此外,我们确定了电子反向衍射(EBSD)kikuchi模式矩阵映射与本样品的SEM图像之间的意外数学关系,可以将EBSD技术领域中Banach定点定理的具体示例合理化为本样品的SEM图像。
The Kikuchi bands arise from Bragg diffraction of incoherent electrons scattered within a crystalline specimen and can be observed in both the transmission and reflection modes of scanning electron microscopy (SEM). Converging, rocking, or grazing incidence beams must be used to generate divergent electron sources to obtain the Kikuchi pattern. This paper report the observation of Kikuchi pattern from SEM images of an exceptional rotating crystal with continuous rotation in the local crystal direction and satisfying cylindrical symmetry, named a cylindrically symmetric rotating crystal. SEM images of cylindrically symmetric rotating crystals reflect the interactions between electrons and the sample in both the real- and momentum-space. Furthermore, we identify an unexpected mathematical relationship between the electron backscattered diffraction (EBSD) Kikuchi pattern matrix map and the SEM image of the present sample which can be rationalized as a concrete example of the Banach fixed-point theorems in the field of EBSD technique.