论文标题
交叉对称分散关系的局部性和分析性
Locality and Analyticity of the Crossing Symmetric Dispersion Relation
论文作者
论文摘要
本文讨论了交叉对称分散关系(CSDR)的位置和分析性。在CSDR上施加局部性约束会导致散射幅度的局部和完全交叉的对称扩展,称为Feynman块膨胀。为从扩展中出现的联系项提供了通用公式。扩展的分析结构域也类似于Lehmann-Martin椭圆形。我们对II型超弦树幅度的观察表明,Feynman块扩展具有更大的分析域和更好的收敛性。
This paper discusses the locality and analyticity of the crossing symmetric dispersion relation (CSDR). Imposing locality constraints on the CSDR gives rise to a local and fully crossing symmetric expansion of scattering amplitudes, dubbed as Feynman block expansion. A general formula is provided for the contact terms that emerge from the expansion. The analyticity domain of the expansion is also derived analogously to the Lehmann-Martin ellipse. Our observation of type-II super-string tree amplitude suggests that the Feynman block expansion has a bigger analyticity domain and better convergence.