论文标题
IGLU 2022:在神经2022的协作环境中的交互式基础语言理解
IGLU 2022: Interactive Grounded Language Understanding in a Collaborative Environment at NeurIPS 2022
论文作者
论文摘要
人类智能具有迅速适应新任务和环境的非凡能力。从很小的时候开始,人类就可以获得新技能,并学习如何通过模仿他人的行为或遵循提供的自然语言指示来解决新任务。为了促进这个方向的研究,我们提出IGLU:在协作环境中的互动基础语言理解。竞争的主要目标是解决如何开发交互式体现的代理的问题,这些互动式体现的代理在协作环境中提供了扎根的自然语言指示,以学习解决任务。了解挑战的复杂性,我们将其分为子任务,以使其对参与者的可行。 这项研究挑战自然相关但不限于与神经社区高度相关的两个研究领域:自然语言理解和产生(NLU/G)(NLU/G)和增强学习(RL)。因此,建议的挑战可以使两个社区聚集在一起,以应对AI中的关键挑战之一。挑战的另一个关键方面是,奉献者对参赛者开发的代理商进行最终评估进行人体评估。
Human intelligence has the remarkable ability to adapt to new tasks and environments quickly. Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions. To facilitate research in this direction, we propose IGLU: Interactive Grounded Language Understanding in a Collaborative Environment. The primary goal of the competition is to approach the problem of how to develop interactive embodied agents that learn to solve a task while provided with grounded natural language instructions in a collaborative environment. Understanding the complexity of the challenge, we split it into sub-tasks to make it feasible for participants. This research challenge is naturally related, but not limited, to two fields of study that are highly relevant to the NeurIPS community: Natural Language Understanding and Generation (NLU/G) and Reinforcement Learning (RL). Therefore, the suggested challenge can bring two communities together to approach one of the crucial challenges in AI. Another critical aspect of the challenge is the dedication to perform a human-in-the-loop evaluation as a final evaluation for the agents developed by contestants.