论文标题
通过模型不足的条件变异自动编码器改善项目冷启动建议
Improving Item Cold-start Recommendation via Model-agnostic Conditional Variational Autoencoder
论文作者
论文摘要
嵌入和MLP已成为现代大规模推荐系统的范式。但是,这种范式遇到了一个冷启动的问题,这将严重损害推荐系统的生态健康。本文试图通过生成具有历史数据和有限互动记录的冷热物品的增强的热身ID嵌入来解决该项目冷启动问题。从工业实践的方面,我们主要关注以下三个项目冷启动:1)如何在没有其他数据要求的情况下进行冷启动,并使策略易于在在线推荐方案中部署。 2)如何利用新项目的历史记录和不断出现的交互数据。 3)如何通过相互作用数据稳定地对项目ID和侧面信息之间的关系进行建模。为了解决这些问题,我们提出了一个基于模型的条件变化自动编码器建议(CVAR)框架,其中一些优点,包括各种骨架上的兼容性,对数据的额外要求,历史数据的利用和最近的新兴互动。 CVAR使用潜在变量来学习对项目侧面信息的分布,并使用条件解码器生成所需的项目ID嵌入。通过在公共数据集上进行广泛的离线实验和在线新闻推荐平台上的在线A/B测试评估了所提出的方法,这进一步说明了CVAR的优势和鲁棒性。
Embedding & MLP has become a paradigm for modern large-scale recommendation system. However, this paradigm suffers from the cold-start problem which will seriously compromise the ecological health of recommendation systems. This paper attempts to tackle the item cold-start problem by generating enhanced warmed-up ID embeddings for cold items with historical data and limited interaction records. From the aspect of industrial practice, we mainly focus on the following three points of item cold-start: 1) How to conduct cold-start without additional data requirements and make strategy easy to be deployed in online recommendation scenarios. 2) How to leverage both historical records and constantly emerging interaction data of new items. 3) How to model the relationship between item ID and side information stably from interaction data. To address these problems, we propose a model-agnostic Conditional Variational Autoencoder based Recommendation(CVAR) framework with some advantages including compatibility on various backbones, no extra requirements for data, utilization of both historical data and recent emerging interactions. CVAR uses latent variables to learn a distribution over item side information and generates desirable item ID embeddings using a conditional decoder. The proposed method is evaluated by extensive offline experiments on public datasets and online A/B tests on Tencent News recommendation platform, which further illustrate the advantages and robustness of CVAR.